留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星进入舱配平翼机构展开冲击动力学分析

杨智杰 王刚 赵瑞杰 王春洁 赵军鹏

杨智杰,王刚,赵瑞杰,等. 火星进入舱配平翼机构展开冲击动力学分析[J]. 北京航空航天大学学报,2023,49(2):422-429 doi: 10.13700/j.bh.1001-5965.2021.0234
引用本文: 杨智杰,王刚,赵瑞杰,等. 火星进入舱配平翼机构展开冲击动力学分析[J]. 北京航空航天大学学报,2023,49(2):422-429 doi: 10.13700/j.bh.1001-5965.2021.0234
YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0234
Citation: YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0234

火星进入舱配平翼机构展开冲击动力学分析

doi: 10.13700/j.bh.1001-5965.2021.0234
基金项目: 国家自然科学基金(52105240)
详细信息
    通讯作者:

    E-mail:zhaojunpeng@buaa.edu.cn

  • 中图分类号: V415.4

Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules

Funds: National Natural Science Foundation of China (52105240)
More Information
  • 摘要:

    在着陆巡视器进入火星大气的过程中,配平翼机构会根据指令由收拢状态展开,并在到达指定位置后锁定,进而将进入舱配平攻角降至合理范围内,因此,其展开动力学性能对后续任务的成败至关重要。以配平翼机构功能的顺利实现为背景,研究复合材料构件的冲击动力学分析方法,建立了其有限元分析模型并基于隐式动力学算法对其展开过程进行了仿真。通过与地面试验结果对比,验证了展开动力学分析模型的正确性。在此基础上,对配平翼机构进入火星大气过程中的2种气动载荷工况下的展开过程进行了分析;基于Hashin理论对碳纤维蒙皮翼板的强度进行了校核,在2种气动载荷工况下各铺层的纤维拉伸、纤维压缩、基体拉伸及基体压缩4种失效模式所对应的失效因子均处于安全范围。可对类似机构的展开冲击问题研究提供参考。

     

  • 图 1  配平翼机构有限元模型

    Figure 1.  Finite element model of trim-wing mechanism

    图 2  阻尼力矩与扭转角速度关系曲线

    Figure 2.  Relationship curve between damping torque and torsional angular velocity

    图 3  翼板前端测点处位移、速度曲线

    Figure 3.  Displacement and velocity curve at the measuring point at the front end of the wing

    图 4  垂直翼板方向加速度曲线

    Figure 4.  Acceleration curve perpendicular to the wing

    图 5  翼板各铺层主应力云图

    Figure 5.  Principal stress contours of each wing layer

    图 6  气动阻力矩与转角关系曲线

    Figure 6.  Relationship curve between aerodynamic drag torque and rotation angle

    表  1  试验气动载荷数据

    Table  1.   Data of the aerodynamic load test

    转角/(°)试验气动载荷/(N·m)
    00
    243.79
    548.53
    8413.26
    18114
    下载: 导出CSV

    表  2  试验气动载荷下仿真结果与试验结果对比

    Table  2.   Comparison of simulation results and results of aerodynamic load test

    内容展开时间/ms传感器测点处x方向
    加速度/(m·s−2)
    试验数据500194.3
    仿真数据478185.5
     注:展开时间误差、传感器测点处x方向加速度误差分别为4.4%,4.5%。
    下载: 导出CSV

    表  3  不同工况下计算结果统计

    Table  3.   Statistics of calculation results under different conditions

    工况展开时间/ms翼板前端测点加速度/(m·s−2传感器测点加速度/(m·s−2)
    xyz幅值xyz幅值
    最小气动载荷工况486.846.31.1550.751.1 29.70.896.729
    最大气动载荷工况767.555.51.1974.670.142.91.037.844.2
    下载: 导出CSV

    表  4  不同工况下翼板各铺层主应力统计

    Table  4.   Statistics of principal stress of each wing layer under different conditions MPa

    工况主应力类型上蒙皮各铺层主应力下蒙皮各铺层主应力
    0°铺层45°铺层−45°铺层90°铺层90°铺层−45°铺层45°铺层0°铺层
    最小气动载荷工况最大主应力233.5130.9130.7172.9 171.7206.5206.8216.9
    最小主应力−40.4−63.5−63 −66.5−60.7−102.9−103.5−16.9
    最大气动载荷工况最大主应力270.3117.6117.791.9 208.2206.1206.5223.6
    最小主应力−3.8−63.1−63.3−42 −59.2−100.6−101.2−23.7
    下载: 导出CSV

    表  5  不同工况下翼板各铺层的Hashin损伤因子统计

    Table  5.   Statistics of Hashin damage factor for each wing layer under different conditions

    工况失效模式上蒙皮各铺层损伤因子 下蒙皮各铺层损伤因子
    0°铺层45°铺层−45°铺层90°铺层90°铺层−45°铺层45°铺层0°铺层
    最小气动载荷工况纤维受压破坏0.21050.08270.08230.10100.03720.05830.05850.0501
    纤维受拉破坏0.01360.00430.00430.00750.00990.01140.01150.0119
    基体受压破坏0.00810.00290.00240.00130.00010.00120.00100.0102
    基体受拉破坏0.00960.01290.01240.01460.01660.01640.01730.0181
    最大气动载荷工况纤维受压破坏0.22200.08740.08700.1051 0.01570.04470.04510.0602
    纤维受拉破坏0.01900.00410.00410.00220.01090.01180.01190.0125
    基体受压破坏0.00880.00280.00250.00130.00090.00170.00180.0102
    基体受拉破坏0.00970.01720.01650.02010.01760.01750.01850.0198
    下载: 导出CSV
  • [1] 任守志, 刘立平. 零重力试验装置对太阳翼展开影响分析[J]. 航天器工程, 2008, 17(6): 73-78. doi: 10.3969/j.issn.1673-8748.2008.06.011

    REN S Z, LIU L P. Influence of the zero-gravity test facility on the solar array's deployment test[J]. Spacecraft Engineering, 2008, 17(6): 73-78(in Chinese). doi: 10.3969/j.issn.1673-8748.2008.06.011
    [2] 王晛, 陈天智, 柴洪友. 太阳翼地面展开锁定的动力学仿真分析[J]. 航天器工程, 2011, 20(3): 86-92. doi: 10.3969/j.issn.1673-8748.2011.03.014

    WANG X, CHEN T Z, CHAI H Y. Dynamics simulation analysis of solar array ground deployment and locking[J]. Spacecraft Engineering, 2011, 20(3): 86-92(in Chinese). doi: 10.3969/j.issn.1673-8748.2011.03.014
    [3] 濮海玲, 王晛, 杨巧龙. 黏滞型阻尼器对太阳翼展开性能的影响分析[J]. 航天器工程, 2013, 22(1): 54-59. doi: 10.3969/j.issn.1673-8748.2013.01.011

    PU H L, WANG X, YANG Q L. Analysis of viscous damper effect on solar array deployment[J]. Spacecraft Engineering, 2013, 22(1): 54-59(in Chinese). doi: 10.3969/j.issn.1673-8748.2013.01.011
    [4] ZHANG Z J, YUAN G Z, ZOU Y J. Study on latch-up impact loads during solar wing deployment[J]. Spacecraft Engineering, 2012, 21(1): 31-36.
    [5] 荣吉利, 宋逸博, 刘志超, 等. 圆形薄膜太阳翼展开动力学分析与模态分析[J]. 宇航学报, 2020, 41(9): 1125-1131. doi: 10.3873/j.issn.1000-1328.2020.09.002

    RONG J L, SONG Y B, LIU Z C, et al. Deployment dynamic analysis and modal analysis of circular membrane solar arrays[J]. Journal of Astronautics, 2020, 41(9): 1125-1131(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.09.002
    [6] 吴宏宇, 王春洁, 丁宗茂, 等. 着陆姿态不确定下的着陆器缓冲机构优化设计[J]. 宇航学报, 2018, 39(12): 1323-1331. doi: 10.3873/j.issn.1000-1328.2018.12.002

    WU H Y, WANG C J, DING Z M, et al. Optimization design of a landing gear under uncertain landing attitude[J]. Journal of Astronautics, 2018, 39(12): 1323-1331(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.12.002
    [7] 吴宏宇, 王春洁, 丁宗茂, 等. 两种着陆模式下的着陆器缓冲机构构型优化[J]. 宇航学报, 2017, 38(10): 1032-1040. doi: 10.3873/j.issn.1000-1328.2017.10.003

    WU H Y, WANG C J, DING Z M, et al. Configuration optimization of landing gear under two kinds of landing modes[J]. Journal of Astronautics, 2017, 38(10): 1032-1040(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.10.003
    [8] 逯运通, 宋顺广, 王春洁, 等. 基于刚柔耦合模型的月球着陆器动力学分析[J]. 北京航空航天大学学报, 2010, 36(11): 1348-1352. doi: 10.13700/j.bh.1001-5965.2010.11.004

    LU Y T, SONG S G, WANG C J, et al. Dynamic analysis for lunar lander based on rigid-flexible coupled model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11): 1348-1352(in Chinese). doi: 10.13700/j.bh.1001-5965.2010.11.004
    [9] 吴宏宇, 王春洁, 丁建中, 等. 基于多工况的新型着陆器软着陆性能优化[J]. 北京航空航天大学学报, 2017, 43(4): 776-781. doi: 10.13700/j.bh.1001-5965.2016.0296

    WU H Y, WANG C J, DING J Z, et al. Soft landing performance optimization for novel lander based on multiple working conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 776-781(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0296
    [10] 梁东平, 柴洪友. 着陆冲击仿真月壤本构模型及有限元建模[J]. 航天器工程, 2012, 21(1): 18-24. doi: 10.3969/j.issn.1673-8748.2012.01.006

    LIANG D P, CHAI H Y. Lunar soil constitutive model and finite element modeling for landing impact simulation[J]. Spacecraft Engineering, 2012, 21(1): 18-24(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.01.006
    [11] 梁东平, 柴洪友, 曾福明. 月球着陆器着陆腿非线性有限元建模与仿真[J]. 北京航空航天大学学报, 2013, 39(1): 11-15. doi: 10.13700/j.bh.1001-5965.2013.01.012

    LIANG D P, CHAI H Y, ZENG F M. Nonlinear finite element modeling and simulation for landing leg of lunar lander[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 11-15(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.01.012
    [12] LI T J, WANG Y. Deployment dynamic analysis of deployable antennas considering thermal effect[J]. Aerospace Science and Technology, 2009, 13(4): 210-215.
    [13] 李培. 大型星载环形桁架天线展开动力学研究[D]. 北京: 北京理工大学, 2016: 72-88.

    LI P. Deployment dynamics of the large-scale hoop truss antenna of satellite[D]. Beijing: Beijing Institute of Technology, 2016: 72-88(in Chinese).
    [14] 李团结, 张琰, 段宝岩. 周边桁架可展开天线展开过程仿真方法[J]. 系统仿真学报, 2008, 20(8): 2081-2084. doi: 10.16182/j.cnki.joss.2008.08.032

    LI T J, ZHANG Y, DUAN B Y. Approach to deployable process simulation of circular truss deployable antenna[J]. Journal of System Simulation, 2008, 20(8): 2081-2084(in Chinese). doi: 10.16182/j.cnki.joss.2008.08.032
    [15] BATHE K J. 有限元法(下)[M]. 轩建平, 译. 北京: 高等教育出版社, 2016: 319-339.

    BATHE K J. Finite element procedures(II)[M]. XUAN J P, translated. Beijing: Higher Education Press, 2016: 319-339(in Chinese).
    [16] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
    [17] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. doi: 10.1177/002199837300700404
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  61
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-30
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答