留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种外日球层拾起离子探测器的设计与仿真

高天丰 孔令高 苏斌 张爱兵

高天丰,孔令高,苏斌,等. 一种外日球层拾起离子探测器的设计与仿真[J]. 北京航空航天大学学报,2023,49(2):367-377 doi: 10.13700/j.bh.1001-5965.2021.0243
引用本文: 高天丰,孔令高,苏斌,等. 一种外日球层拾起离子探测器的设计与仿真[J]. 北京航空航天大学学报,2023,49(2):367-377 doi: 10.13700/j.bh.1001-5965.2021.0243
GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0243
Citation: GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0243

一种外日球层拾起离子探测器的设计与仿真

doi: 10.13700/j.bh.1001-5965.2021.0243
基金项目: 中国科学院空间科学战略性先导科技专项 (XDA1535010202, XDA15011200)
详细信息
    通讯作者:

    E-mail:klg@nssc.ac.cn

  • 中图分类号: V447+.1;P354

Design and simulation of detector for outer heliosphere pickup ions

Funds: Strategic Pilot Projects in Space Science, Chinese Academy of Sciences (XDA1535010202, XDA15011200)
More Information
  • 摘要:

    针对外日球层低速、低密度、低温的拾起离子(PUIs)的高分辨探测需求,以带顶盖超环面静电分析器、阻滞势分析器和线性场飞行时间系统为基础设计了一种新型高分辨拾起离子探测器。经过有限元仿真分析,探测器可实现离子(氢)的速度范围15.7 ~1072.2 km/s,密度范围0.0001 ~100 cm−3,温度高于474.9 K的探测,同时可实现典型拾起离子(氢、氦、碳、氮、氧、氖)的成分分辨,质谱分辨率(M/ΔM)大于40。

     

  • 图 1  拾起离子传感器设计原理

    Figure 1.  Design scheme of pickup ion sensor

    图 2  ESA基本结构示意图

    Figure 2.  Basic structure diagram of ESA

    图 3  RPA模型

    Figure 3.  Model of RPA

    图 4  ESA和RPA不同组合时的能谱响应

    Figure 4.  Energy response of different combinations of ESA and RPA

    图 5  静电分析器中的偏转板位置

    Figure 5.  Positions of deflectors in electrostatic analyzers

    图 6  ESA和LEF-TOF电场等势线

    Figure 6.  Electric field equipotential line of ESA and LEF-TOF

    图 7  离子和次级电子在ESA和LEF-TOF中的仿真飞行轨迹

    Figure 7.  Simulated flight trajectories of ions and secondary electrons in ESA and LEF-TOF

    图 8  ESA仿真离子能谱

    Figure 8.  Simulated energy spectrum of ESA

    图 9  单能量离子束在RPA电压扫描下的计数率

    Figure 9.  Counting rates of monoenergetic beams with RPA voltages

    图 10  RPA加电压时离子计数率微分曲线

    Figure 10.  Differential ion counting rates with RPA voltages

    图 11  超环面静电分析器焦点位置仿真

    Figure 11.  Focal point of toroidal electrostatic analyzer

    图 12  次级电子在MCP上的计数分布

    Figure 12.  Count distribution of secondary electrons on MCP

    图 13  次级电子在MCP上的计数分布随RPA电压的变化

    Figure 13.  Count distribution of secondary electrons on MCP with RPA voltages

    图 14  方位角分辨率随RPA电压的变化曲线

    Figure 14.  Curve of azimuth resolution with RPA voltages

    图 15  有效离子入射俯仰角分布

    Figure 15.  Elevation angle distribution of effective ions

    图 16  偏转板加不同电压时有效离子入射俯仰角分布

    Figure 16.  Elevation angle distribution of effective ions with deflector biased to different voltages

    图 17  俯仰角中心角度βc和偏转板因子S的仿真结果拟合曲线

    Figure 17.  Simulation results and fitting line between βc and S

    图 18  1 keV离子束E-β相空间分布

    Figure 18.  E-β phase space distribution of a beam of 1 keV ions

    图 19  离子在碳膜中的轨迹仿真

    Figure 19.  Trajectory simulation of ions in carbon foil

    图 20  离子成分H+~Ne+飞行时间谱

    Figure 20.  Spectrum of time-of-flight for H+~Ne+

    图 21  1.28 eV H+飞行时间图谱

    Figure 21.  Spectrum of time-of-flight for 1.28 eV H+

    表  1  拾起离子探测器技术指标仿真结果

    Table  1.   Simulation specifications of pickup ion detector

    技术指标仿真结果
    能量范围/eV1.28~6 000
    能量分辨率/%ESA(ΔE/E) 14.26
    ESA+RPA 1.60
    静电分析器常数4.26
    方位角范围/(°)0~360
    俯仰角范围/(°)−6.9~3.6(FWHM)
    方位角分辨率/(°)0.78(固有极限)
    15.00(实际设计)
    几何因子/cm2·sr0.02096
    速度/(km·s−1)15.7~1072.2 @H+
    密度/cm−31×10−4~100 @H+
    温度/K≥474.9
    质谱分辨率>40 for M=1~20(54.5@H+
    下载: 导出CSV
  • [1] HOLLICK S J, SMITH C W, PINE Z B, et al. Magnetic waves excited by newborn interstellar pickup ions measured by the Voyager spacecraft from 1 to 45 au. I. wave properties[J]. The Astrophysical Journal, 2018, 863(1): 75-93. doi: 10.3847/1538-4357/aac83b
    [2] SWACZYNA P, MCCOMAS D J, ZIRNSTEIN E J. He+ ions comoving with the solar wind in the outer heliosphere[J]. The Astrophysical Journal, 2019, 875(1): 36-48. doi: 10.3847/1538-4357/ab1081
    [3] STILWELL D E, JOYCE R M, TEEGARDEN B J, et al. The Pioneer 10/11 and Helios A/B cosmic ray instruments[J]. IEEE Transactions on Nuclear Science, 2007, 22(1): 570-574.
    [4] BRIDGE H S, BELCHER J W, BUTLER R J, et al. The plasma experiment on the 1977 Voyager Mission[J]. Space Science Review, 1977, 21(3): 259-287.
    [5] MÖBIUS E, HOVESTADT D, KLECKER B, et al. Direct observation of He+ pick-up ions of interstellar origin in the solar wind[J]. Nature, 1985, 318(6045): 426-429. doi: 10.1038/318426a0
    [6] GLOECKLER G, GEISS J, BALSIGER H, et al. The Ulysses solar wind plasma experiment[J]. Astronomy and Astrophysics Supplement Series, 1992, 92(2): 237-265.
    [7] FRANK L A, ACKERSON K L, LEE J A, et al. The plasma instrumentation for the Galileo Mission[J]. Space Science Reviews, 1992, 60(1-4): 283-304.
    [8] HOVESTADT D, HILCHENBACH M, BÜRGI A, et al. CELIAS-charge, element and isotope analysis system for SOHO[J]. Solar Physics, 1995, 162(1-2): 441-481. doi: 10.1007/BF00733436
    [9] GLOECKLER G, CAIN J, IPAVICH F M, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft[J]. Space Science Reviews, 1998, 86(1-4): 497-539.
    [10] YOUNG D T, BARRACLOUGH B L, BERTHELIER J J, et al. Cassini plasma spectrometer investigation[J]. Space Science Reviews, 2004, 114(1-4): 1-112. doi: 10.1007/s11214-004-1406-4
    [11] MCCOMAS D, ALLEGRINI F, BAGENAL F, et al. The solar wind around Pluto (SWAP) instrument aboard new horizons[J]. Space Science Reviews, 2008, 140(1-4): 261-313. doi: 10.1007/s11214-007-9205-3
    [12] GALVIN A B, KISTLER L M, POPECKI M A, et al. The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories[J]. Space Science Reviews, 2008, 136(1-4): 437-486. doi: 10.1007/s11214-007-9296-x
    [13] ZHONG J, XIE L, ZHANG H, et al. Chang'E-1 observations of pickup ions near the moon under different interplanetary magnetic field conditions[J]. Planetary and Space Science, 2013, 79-80(1): 56-63.
    [14] MCFADDEN J P, KORTMANN O, CURTIS D, et al. MAVEN suprathermal and thermal ion compostion (STATIC) instrument[J]. Space Science Reviews, 2015, 195(1-4): 199-256. doi: 10.1007/s11214-015-0175-6
    [15] GOLDSTEIN R, BURCH J L, MOKASHI P, et al. The rosetta ion and electron sensor (IES) measurement of the development of pickup ions from comet 67P/churyumov-gerasimenko[J]. Geophysical Research Letters, 2015, 42(9): 3093-3099. doi: 10.1002/2015GL063939
    [16] MCCOMAS D J, ALEXANDER N, ALLEGRINI F, et al. The jovian auroral distributions experiment (JADE) on the juno mission to Jupiter[J]. Space Science Reviews, 2017, 213(1-4): 547-643. doi: 10.1007/s11214-013-9990-9
    [17] ZANK G P. Pickup ion-mediated plasma physics of the outer heliosphere and very local interstellar medium[J/OL]. (2016-07-15)[2021-05-08].https://geoscienceletters. springeropen.com/articles/10.1186/s40562-016-0055-2.
    [18] KALLENBACH R, GEISS J, GLOECKLER G, et al. Pick-up ion measurements in the heliosphere–a review[J]. Astrophysics and Space Science, 2000, 274(1-2): 97-114.
    [19] GEISS J, GLOECKLER G, MALL U, et al. Interstellar oxygen, nitrogen and neon in the heliosphere[J]. Astronomy & Astrophysics, 1994, 282(3): 924-933.
    [20] QUINN P, SCHWADRON N, MÖBIUS E, et al. Inner source C+/O+ pickup ions produced by solar wind recycling, neutralization, backscattering, sputtering, and sputtering-induced recycling[J]. The Astrophysical Journal, 2018, 861(2): 98-110. doi: 10.3847/1538-4357/aac6ca
    [21] WU Y, FLORINSKI V, GUO X. Interstellar pickup ion production in the global heliosphere and heliosheath[J]. The Astrophysical Journal, 2016, 832(1): 61-68. doi: 10.3847/0004-637X/832/1/61
    [22] ISENBERG P A. Interaction of the solar wind with interstellar neutral hydrogen: Three-fluid model[J/OL]. (1986-09-01)[2021-05-08].https://agupubs.onlinelibrary.wiley.com/doi/10.1029/JA091iA09p09965.
    [23] WANG C, RICHARDSON J D. Energy partition between solar wind protons and pickup ions in the distant heliosphere: A three-fluid approach[J/OL]. (2001-12-01)[2021-05-08].https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2001JA000190.
    [24] WHANG Y C. The global solar wind between 1 AU and the termination shock[J]. The Astrophysical Journal, 2010, 713(2): 721-730. doi: 10.1088/0004-637X/713/2/721
    [25] USMANOV A V, GOLDSTEIN M L. A three-dimensional MHD solar wind model with pickup protons[J/OL]. (2006-07-07)[2021-05-08].https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005JA011533.
    [26] DELCOURT D, SAITO Y, LEBLANC F, et al. The mass spectrum analyzer (MSA) on board the BepiColombo MMO[J]. Journal of Geophysical Research:Space Physics, 2016, 121(7): 6749-6762. doi: 10.1002/2016JA022380
    [27] YOUNG D T, BAME S J, THOMSEN M F, et al. 2π-radian field-of-view toroidal electrostatic analyzer[J]. Review of Scientific Instruments, 1988, 59(5): 743-751. doi: 10.1063/1.1139821
    [28] GILBERT J A, LUNDGREN R A, PANNING M H, et al. An optimized three-dimensional linear-electric-field time-of-flight analyzer[J]. Review of Scientific Instruments, 2010, 81(5): 053302. doi: 10.1063/1.3429941
    [29] PUDJORAHARDJO D S, SUPRAPTO S, DARSONO D, et al. Simulation study of electron beam spot size from thermionic electron gun using SIMION 8.1 software[C]//AIP Conference Proceedings. New York: American Institute of Physics, 2018: 020156.
    [30] SILVA R, BUNDALESKI N, FONSECA A L, et al. 3D-simulation of a Bayard Alpert ionisation gauge using SIMION program[J]. Vacuum, 2019, 164(5): 300-307.
    [31] PFAFF R F, BOROVSKY J E, YOUNG D T. Measurement techniques in space plasmas: Particles[M]. Washington, D. C. : American Geophysical Union, 2013: 125-140.
    [32] BERTAUX J L, LALLEMENT R, KURT V G, et al. Characteristics of the local interstellar hydrogen determined from POGNOZ 5 and 6 interplanetary lyman-alpha line profile measurements with a hydrogen absorption cell[J]. Astronomy & Astrophysics, 1985, 150(1): 1-20.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  57
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 录用日期:  2021-10-09
  • 网络出版日期:  2021-11-01
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答