留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能影响

杨昊 谢宗蕻 杨海波 袁培毓 岳喜山 赵伟

杨昊,谢宗蕻,杨海波,等. 穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能影响[J]. 北京航空航天大学学报,2023,49(2):378-387 doi: 10.13700/j.bh.1001-5965.2021.0249
引用本文: 杨昊,谢宗蕻,杨海波,等. 穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能影响[J]. 北京航空航天大学学报,2023,49(2):378-387 doi: 10.13700/j.bh.1001-5965.2021.0249
YANG H,XIE Z H,YANG H B,et al. Influence of penetration damage on in-plane compression properties of titanium honeycomb sandwich cover structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):378-387 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0249
Citation: YANG H,XIE Z H,YANG H B,et al. Influence of penetration damage on in-plane compression properties of titanium honeycomb sandwich cover structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):378-387 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0249

穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能影响

doi: 10.13700/j.bh.1001-5965.2021.0249
详细信息
    作者简介:

    杨昊,等:穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能影响 5

    通讯作者:

    E-mail:weida1985@126.com

  • 中图分类号: V414.6

Influence of penetration damage on in-plane compression properties of titanium honeycomb sandwich cover structure

More Information
  • 摘要:

    钛合金蜂窝口盖壁板在实际服役过程中可能会产生穿透性损伤,从而影响口盖壁板面内压缩性能。采用试验和有限元计算相结合的方法研究了穿透性损伤对钛合金蜂窝口盖壁板面内压缩性能的影响。结果显示:含穿透性损伤的钛合金蜂窝口盖壁板的面内压缩破坏载荷要略高于无损伤钛合金蜂窝口盖壁板,且面内压缩破坏载荷随穿透性损伤直径增大而增大;有限元模型预测的破坏模式与试验结果一致,预测的破坏载荷与试验结果的最大偏差为9.33%,两者吻合较好。研究结果可以为钛合金蜂窝口盖壁板的设计及面内压缩性能的预测提供数据支持和研究方法参考。

     

  • 图 1  无损伤试验件结构细节

    Figure 1.  Details of the specimen without damage

    图 2  无损伤试验件应变片位置示意图

    Figure 2.  The strain gage position of the specimen without damage

    图 3  面内压缩试验夹具示意图

    Figure 3.  Diagram of the device of in-plane compression experiments

    图 4  无损伤和含30 mm,40 mm直径穿透性损伤试验件典型破坏模式

    Figure 4.  Typical failure modes of specimens with intact 30 mm and 40 mm diameter penetrating damage

    图 5  含50 mm直径穿透性损伤试验件典型破坏模式

    Figure 5.  Typical failure modes of specimens with 50 mm diameter penetrating damage

    图 6  无损伤模型网格及有限元分析边界条件

    Figure 6.  Meshing boundary conditions and loading conditions of finite element simulation model without damage

    图 7  无损伤口盖壁板面内压缩破坏模式对比

    Figure 7.  Comparison of in-plane compression failure modes of structure without damage

    图 8  无损伤壁板面内压缩载荷-应变曲线对比

    Figure 8.  Comparison of in-plane compression load-strain curves of structure without damage

    图 9  含穿透性损伤口盖壁板面内压缩破坏模式对比

    Figure 9.  Comparison of in-plane compression failure modes of structure with penetrating damage

    图 10  不同直径穿透性损伤的面内压缩载荷-位移曲线对比

    Figure 10.  Comparison of in-plane compression load-displacement curves of different penetrating damage

    图 11  D30、D50含穿透性损伤壁板于位移1 mm与1.2 mm处变形对比

    Figure 11.  Deformation comparison of D30 and D50 penetrating damage structure under the displacement of 1 mm and 1.2 mm

    图 12  不同直径穿透性损伤的破坏载荷及拟合曲线

    Figure 12.  Failure load and fitting curves with penetrating damage of different diameters

    图 13  钛合金蜂窝口盖壁板面内压缩载荷分布对比

    Figure 13.  Comparison of in-plane compression load distribution of the titanium honeycomb sandwich cover structure

    表  1  钛合金蜂窝口盖壁板面内压缩破坏载荷试验值

    Table  1.   Experimental compression failure loads of the titanium honeycomb sandwich cover structure

    损伤直
    径/mm
    破坏载荷平
    均值/kN
    离散系
    数/%
    面内压缩破坏载
    荷降低比例/%
    0149.407.85
    30140.801.866.11
    40158.1711.392.33
    50157.539.57−5.54
     注:降低比例的负号表示提高。
    下载: 导出CSV

    表  2  TC4材料参数

    Table  2.   Material parameters of TC4

    材料弹性模量/GPa泊松比屈服强度/MPa破坏强度/MPa
    TC4108.480.30861.59967.12
    下载: 导出CSV

    表  3  TC4应力与塑性应变

    Table  3.   The true stress and the plastic strain of TC4

    应力/MPa塑性应变/με
    8300
    861.70.002
    9600.01
    10000.012
    下载: 导出CSV

    表  4  钛合金蜂窝口盖壁板破坏载荷对比

    Table  4.   Comparison of failure loads of the titanium honeycomb sandwich cover structure

    损伤直径/mm破坏载荷偏差/%
    有限元预测值/kN试验值/kN
    0148.03149.40−0.92
    30153.93140.809.33
    40155.07146.006.21
    50157.53158.17−5.56
    下载: 导出CSV
  • [1] ZHAO W, XIE Z H, LI X, et al. Compression after impact behavior of titanium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2018, 20(5): 639-657.
    [2] XIE Z H, ZHAO W, WANG X N, et al. Low-velocity impact behaviour of titanium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials, 2018, 20(8): 1009-1027.
    [3] 杨海波, 江少华, 赵志远, 等. 钛合金蜂窝整体机身壁板技术应用研究[J]. 航空制造技术, 2013, 56(16): 126-128. doi: 10.3969/j.issn.1671-833X.2013.16.029

    YANG H B, JIANG S H, ZHAO Z Y, et al. Engineering application research of titanium honeycomb integral fuselage panel technology[J]. Aeronautical Manufacturing Technology, 2013, 56(16): 126-128(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.16.029
    [4] 谢宗蕻, 岳喜山, 孙俊锋. 钛合金蜂窝壁板隔热性能试验研究[J]. 南京航空航天大学学报, 2016, 48(1): 16-20. doi: 10.16356/j.1005-2615.2016.01.003

    XIE Z H, YUE X S, SUN J F. Experimental study on thermal insulation performance of titanium honeycomb sandwich panels[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(1): 16-20(in Chinese). doi: 10.16356/j.1005-2615.2016.01.003
    [5] GIBSON L J, ASHBY M F. Cellular Solids[M]. Cambridge: Cambridge University Press, 1997: 93-108.
    [6] 王颖坚. 面外压力下蜂窝结构弹性屈曲临界载荷[J]. 固体力学学报, 1993, 14(1): 63-66. doi: 10.19636/j.cnki.cjsm42-1250/o3.1993.01.009

    WANG Y J. Elastic buckling critical load of honeycomb structure under out-of-plane pressure[J]. Acta Mechanica Solida Sinica, 1993, 14(1): 63-66(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.1993.01.009
    [7] 唐劼尧, 柏敏建. 轴压载荷下复合材料蜂窝夹芯板的稳定性研究[J]. 兵器装备工程学报, 2020, 41(9): 242-246. doi: 10.11809/bqzbgcxb2020.09.045

    TANG J Y, BAI M J. Stability evaluation on composite honeycomb sandwich panels subjected to compressive loadings[J]. Journal of Ordnance Equipment Engineering, 2020, 41(9): 242-246(in Chinese). doi: 10.11809/bqzbgcxb2020.09.045
    [8] 潘松, 王新峰, 陈晓烽. 含面芯脱粘边缘闭合蜂窝壁板压缩稳定性研究[J]. 南京航空航天大学学报, 2019, 51(1): 35-40. doi: 10.16356/j.1005-2615.2019.01.006

    PAN S, WANG X F, CHEN X F. Stability research of edge closed honeycomb sandwich panels with face/core debond under compression[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(1): 35-40(in Chinese). doi: 10.16356/j.1005-2615.2019.01.006
    [9] 谢宗蕻, 苏霓, 张磊, 等. 复合材料蜂窝夹芯板低速冲击损伤扩展特性[J]. 南京航空航天大学学报, 2009, 41(1): 30-35. doi: 10.3969/j.issn.1005-2615.2009.01.007

    XIE Z H, SU N, ZHANG L, et al. Damage propagation behavior of composite honeycomb sandwich panels under low-velocity impact[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1): 30-35(in Chinese). doi: 10.3969/j.issn.1005-2615.2009.01.007
    [10] 王琦, 童国权, 陈峰, 等. 缺陷对高温合金蜂窝板弯曲力学性能的影响[J]. 航空制造技术, 2017, 60(S1): 106-111. doi: 10.16080/j.issn1671-833x.2017.1/2.106

    WANG Q, TONG G Q, CHEN F, et al. Effect of defects on bending mechanical property of high temperature alloy honeycomb panels[J]. Aeronautical Manufacturing Technology, 2017, 60(S1): 106-111(in Chinese). doi: 10.16080/j.issn1671-833x.2017.1/2.106
    [11] 孔祥皓, 赫晓东. 带有典型缺陷的金属蜂窝夹层结构的共面力学性能研究[J]. 固体火箭技术, 2010, 33(6): 684-689. doi: 10.3969/j.issn.1006-2793.2010.06.018

    KONG X H, HAO X D. Study on coplanar mechanical properties of metal honeycomb sandwich with typical defects[J]. Journal of Solid Rocket Technology, 2010, 33(6): 684-689(in Chinese). doi: 10.3969/j.issn.1006-2793.2010.06.018
    [12] 杨凯, 刘立武, 于开平, 等. 带有典型缺陷的金属蜂窝夹层结构的剩余强度研究[J]. 固体火箭技术, 2011, 34(5): 652-654. doi: 10.3969/j.issn.1006-2793.2011.05.025

    YANG K, LIU L W, YU K P, et al. Study on the residual strength of metal honeycomb sandwich structure with typical defects[J]. Journal of Solid Rocket Technology, 2011, 34(5): 652-654(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.05.025
    [13] 岳喜山, 欧阳小龙, 侯金保, 等. 钛合金蜂窝壁板结构钎焊工艺[J]. 航空制造技术, 2009, 52(10): 96-98. doi: 10.3969/j.issn.1671-833X.2009.10.019

    YUE X S, OUYANG X L, HOU J B, et al. Brazing process of titanium alloy honeycomb sandwich panel structure[J]. Aeronautical Manufacturing Technology, 2009, 52(10): 96-98(in Chinese). doi: 10.3969/j.issn.1671-833X.2009.10.019
    [14] 静永娟, 李晓红, 岳喜山. TC1钛合金蜂窝夹层结构的钎焊工艺研究与分析[J]. 航空制造技术, 2012, 55(13): 137-139. doi: 10.3969/j.issn.1671-833X.2012.13.029

    JING Y J, LI X H, YUE X S. Research and analysis of processing parameter for brazing honeycomb sandwich construction in titanium alloy[J]. Aeronautical Manufacturing Technology, 2012, 55(13): 137-139(in Chinese). doi: 10.3969/j.issn.1671-833X.2012.13.029
    [15] 静永娟, 岳喜山, 李智渊, 等. 芯体缺失对钛合金蜂窝夹层结构强度的影响及规律研究[J]. 航空制造技术, 2013, 56(16): 143-145. doi: 10.3969/j.issn.1671-833X.2013.16.033

    JING Y J, YUE X S, LI Z Y, et al. Influence from honeycomb core deletion on Ti-alloy honeycomb sandwich construction[J]. Aeronautical Manufacturing Technology, 2013, 56(16): 143-145(in Chinese). doi: 10.3969/j.issn.1671-833X.2013.16.033
    [16] 刘晓宇. 钛合金蜂窝夹层结构力学性能分析与试验验证[D]. 西安: 西北工业大学, 2014: 13-30.

    LIU X Y. Mechanical properties of titanium honeycomb sandwich structures analysis and experimental validation[D]. Xi’an: Northwestern Polytechnical University, 2014: 13-30(in Chinese).
    [17] 岳喜山, 闫群, 赵伟, 等. 单侧面板裂纹损伤对钛合金蜂窝夹层结构弯曲性能影响[J]. 北京航空航天大学学报, 2020, 46(11): 2018-2025. doi: 10.13700/j.bh.1001-5965.2019.0587

    YUE X S, YAN Q, ZHAO W, et al. Influence of one side facesheet crack damage on flexural properties of titanium honeycomb sandwich structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2018-2025(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0587
    [18] 中国航空研究院. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2001: 554.

    Chinese Aeronautical Establishment. Composite structure design manual[M]. Beijing: Aviation Industry Press, 2001: 554(in Chinese).
    [19] ASTMD7137. Standard test method for measuring the damage resistance of a fiber reinforced polymer matrix composite to a drop-weight impact event: ASTM D7137[S]. Philadelphia, PA: American Society for Testing and Materials, 2007: 16.
    [20] SYSTÈMES D. Abaqus 6.14 online documentation [EB/OL]. (2014-06-14)[2020-05-13]. http://130.149.89.49:2080/v6.14/index.html.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  85
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 录用日期:  2021-09-09
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答