留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完备信息下的超视距空战双机协同战术识别

孟光磊 张慧敏 朴海音 周铭哲

孟光磊,张慧敏,朴海音,等. 非完备信息下的超视距空战双机协同战术识别[J]. 北京航空航天大学学报,2023,49(2):284-294 doi: 10.13700/j.bh.1001-5965.2021.0251
引用本文: 孟光磊,张慧敏,朴海音,等. 非完备信息下的超视距空战双机协同战术识别[J]. 北京航空航天大学学报,2023,49(2):284-294 doi: 10.13700/j.bh.1001-5965.2021.0251
MENG G L,ZHANG H M,PIAO H Y,et al. Cooperative tactical recognition of dual-aircraft formation under incomplete information in BVR air combat[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):284-294 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0251
Citation: MENG G L,ZHANG H M,PIAO H Y,et al. Cooperative tactical recognition of dual-aircraft formation under incomplete information in BVR air combat[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):284-294 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0251

非完备信息下的超视距空战双机协同战术识别

doi: 10.13700/j.bh.1001-5965.2021.0251
基金项目: 国家自然科学基金(61503255);航空科学基金(2016ZD54015);辽宁省“兴辽英才计划” (XLYC2007144)
详细信息
    作者简介:

    孟光磊等:非完备信息下的超视距空战双机协同战术识别 11

    通讯作者:

    E-mail:mengguanglei@yeah.net

  • 中图分类号: V221+.3;TB553

Cooperative tactical recognition of dual-aircraft formation under incomplete information in BVR air combat

Funds: National Natural Science Foundation of China (61503255); Aeronautical Science Foundation of China (2016ZD54015); Liaoning Revitalization Talents Program (XLYC2007144)
More Information
  • 摘要:

    针对超视距(BVR)空战过程中,受探测装置性能限制和敌方干扰等原因,导致目标信息易缺失,从而难以实时准确地识别敌方协同空战战术的问题,提出了一种基于动态贝叶斯网络(DBN)与参数学习的超视距空战双机协同战术识别方法。分析了超视距空战条件下的双机协同战术特征,根据长机和僚机的职能分工、当前态势及机动动作,构建了识别网络模型;为提高模型对双机协同战术的识别概率,采用期望最大参数学习方法优化网络参数;基于自回归模型对缺失目标信息进行修补,提出非完备信息下的双机协同战术识别推理算法。通过开展空战对抗仿真实验,验证了双机协同战术识别方法对于非完备信息下的超视距空战双机协同战术具有较高的识别概率和较好的实时性。

     

  • 图 1  双机协同战术识别网络模型

    Figure 1.  Dual-aircraft cooperative tactical recognition network model

    图 2  模型训练与推理技术路线

    Figure 2.  Technical route of model training and reasoning

    图 3  二对一协同空战飞行仿真轨迹

    Figure 3.  Flight simulation trajectory of two-to-one cooperative air combat

    图 4  未进行数据修补的蓝方双机空间占位特征

    Figure 4.  Space occupying feature of blue dual aircrafts without data patching

    图 5  数据修补后蓝方双机空间占位特征

    Figure 5.  Space occupying feature of blue dual aircraft after data patching

    图 6  蓝方双机机动动作识别概率

    Figure 6.  Probability of maneuver recognition for dual aircraft in blue side

    图 7  参数学习后识别概率分布

    Figure 7.  Probability distribution of recognizing after parameter learning

    图 8  参数学习前识别概率分布

    Figure 8.  Probability distribution of recognizing before parameter learning

    图 9  协同战术识别实时性对比

    Figure 9.  Real-time comparison of cooperative tactical recognition

    图 10  迎头态势下双方飞行轨迹

    Figure 10.  Flight path of both sides in face-on situation

    图 11  迎头态势下协同战术识别概率分布

    Figure 11.  Probability distribution of cooperative tactical identification in face-on situation

    图 12  侧方态势下双方飞行轨迹

    Figure 12.  Flight trajectory of both sides in lateral situation

    图 13  侧方态势下协同战术识别概率分布

    Figure 13.  Probability distribution of cooperative tactical identification in lateral situation

    图 14  尾后态势下双方飞行轨迹

    Figure 14.  Flight trajectory of both sides in rear situation

    图 15  尾后态势下协同战术识别概率分布

    Figure 15.  Probability distribution of cooperative tactical identification in rear situation

    图 16  协同战术识别概率

    Figure 16.  Recognition accuracy of cooperative tactics

    表  1  典型战术下的长机特征信息描述

    Table  1.   Description of leader characteristics information under typical tactics

    协同战术目标长机
    空间占位
    目标长机
    机动特性
    目标长机
    运动趋势
    尾后攻击
    (DA)
    我机后方水平直线飞向我机
    钳形攻击
    (PA)
    我机前方左/右盘旋飞向我机
    侧方攻击
    (LA)
    我机左/右方水平直线飞向我机
    对头攻击
    (EA)
    我机前方水平直线飞向我机
    水平疏开
    (HDO)
    我机左/右/
    前方
    左/右盘旋先飞离我机
    后飞向我机
    垂直疏开
    (VDO)
    我机后方跃升机动飞向我机
    组合疏开(CDO)我机左上/右上方左上/右上
    战斗转弯
    先飞离我机
    后飞向我机
    下载: 导出CSV

    表  2  典型战术下的僚机特征信息描述

    Table  2.   Description of wingman characteristics information under typical tactics

    协同战术目标僚机
    空间占位
    目标僚机
    机动特性
    目标僚机
    运动趋势
    尾后攻击
    (DA)
    我机后方水平直线飞向我机
    钳形攻击
    (PA)
    我机前方左/右盘旋飞向我机
    侧方攻击
    (LA)
    我机左/
    右方
    水平直线飞向我机
    对头攻击
    (EA)
    我机前方先水平直线
    后左/右盘旋
    飞向我机
    水平疏开
    (HDO)
    我机右/左/前方左/右盘旋先飞离我机
    后飞向我机
    垂直疏开
    (VDO)
    我机前方俯冲机动飞离我机
    组合疏开
    (CDO)
    我机右
    /左方
    右下/左下战斗转
    弯左/右盘旋
    先飞离我机
    后飞向我机
    下载: 导出CSV

    表  3  节点含义及状态集说明

    Table  3.   Description of node meaning and state set

    变量变量含义状态集
    ALT1
    ALT2
    目标相对高度高于我机(ALT>400 m)
    基准面 (−400 m<ALT<400 m)
    低于我机 (ALT<−400 m)
    TAZ1
    TAZ2
    目标
    方位角
    前方(−40o~40o)、右方(40o~140o)、
    左方 (−140o~−40o)
    后方 (−140o~−180o&140o~180o)
    TEA1
    TEA2
    目标进入角飞向我机(90o~180o)
    飞离我机(0o~90o)
    TMI1
    TMI2
    目标机动动作水平直线飞行、俯冲、跃升、左盘旋、
    右盘旋、半滚倒转、斤斗、左上战斗转弯、
    右上战斗转弯、蛇形机动
    ICT高度分类
    协同战术
    高度保持类协同战术集(HK)
    高度差类协同战术集(HD)
    SCT方位分类
    协同战术
    前方高度保持类协同战术(FHK)、
    侧方高度保持类协同战术(LHK)、
    垂直疏开战术(VDO)、
    组合疏开战术(CDO)、
    尾后攻击战术(DA)
    CT协同战术对头攻击战术(EA)、侧方攻击战术(LA)、
    尾后攻击战术(DA)、钳形攻击战术(PA)、
    水平疏开战术(HDO)、垂直疏开战术(VDO)、
    组合疏开战术(CDO)、其他战术
    下载: 导出CSV

    表  4  初始概率分布设置

    Table  4.   Initial probability distribution setting

    ICTp(ALT1|ICT)(H, E, L)p(ALT2|ICT)(H, E, L)
    ICT_HK(0.32,0.36,0.32)(0.32,0.36,0.32)
    ICT_HD(0.34,0.32,0.34)(0.34,0.32,0.34)
    下载: 导出CSV

    表  5  最终概率分布设置

    Table  5.   Final probability distribution setting

    ICTp(ALT1|ICT)(H,E, L)p(ALT2|ICT)(H, E, L)
    ICT_HK(0.30,0.42,0.28)(0.30,0.42,0.28)
    ICT_HD(0.37,0.30,0.33)(0.37,0.30,0.33)
    下载: 导出CSV

    表  6  空间占位初始参数设置

    Table  6.   Initial parameter setting of space occupancy

    无人机经度/(°)纬度/(°)高度/m速度/(m·s−1)航向
    /(°)
    红方1号机124.0628.633000220225
    蓝方1号机123.9628.48300025045
    蓝方2号机123.8828.55300025045
    下载: 导出CSV

    表  7  高度数据样本信息

    Table  7.   Height data sample information

    时刻蓝方1号机
    高度ALT1/m
    蓝方2号机
    高度ALT2/m
    时刻蓝方1号机
    高度ALT1/m
    蓝方2号机
    高度ALT2/m
    T13000.003000.00 T112995.00
    T22999.503000.50T12
    T32999.003001.00T132994.00
    T42998.503001.50T142993.50
    T52998.003002.00T152993.00
    T62997.50T16
    T72997.00T172992.00
    T8T182991.503008.50
    T92996.00T192991.003009.00
    T102995.50T203009.50
     注:“—”表示数据缺失。
    下载: 导出CSV

    表  8  目标方位角数据样本信息

    Table  8.   Target azimuth data sample information

    时刻蓝方1号机
    方位角TAZ1/(°)
    蓝方2号机
    方位角TAZ2/(°)
    时刻蓝方1号机
    方位角TAZ1/(°)
    蓝方2号机
    方位角TAZ2/(°)
    T145.32171.50 T1142.11
    T244.71171.61T12
    T344.56171.77T1341.74
    T444.33171.85T1441.51
    T544.16171.91T1541.20
    T643.67T16
    T743.41T1739.66
    T8T1838.70173.21
    T942.67T1937.11173.35
    T1042.43T20173.51
     注:“—”表示数据缺失。
    下载: 导出CSV

    表  9  目标双机方位角、高度的预测模型参数

    Table  9.   Parameters of azimuth and altitude prediction model for dual aircraft

    模型参数阶数自回归参数向量估计
    蓝方1号机高度3$\hat{{\boldsymbol{a}}}_{ {\text{ALT} }1} = [ - 0.35,1.65, - 0.30]$
    蓝方1号机方位角2$\hat {{\boldsymbol{a}}}_{ {\text{TAZ1} } } = [1.632, - 0.627]$
    蓝方2号机高度3$\hat{{\boldsymbol{a}}}_{ {\text{ALT} }2} = [0.95, - 0.85,0.90]$
    蓝方2号机方位角2$\hat{{\boldsymbol{a}}}_{ {\text{TAZ2} } } = [0.667,0.335]$
    下载: 导出CSV

    表  10  迎头态势下空间占位初始参数设置

    Table  10.   Initial parameter setting of space occupancy in face-on situation

    无人机x/my/mz/m速度/(m·s−1)航向
    /(°)
    红方1号机10517103823000250225
    蓝方1号机58802115500025045
    蓝方2号机19586217500025045
    下载: 导出CSV

    表  11  侧方态势下空间占位初始参数设置

    Table  11.   Initial parameter setting of space occupancy in lateral situation

    无人机x/my/mz/m速度/(m·s−1)航向
    /(°)
    红方1号机594483233500250270
    蓝方1号机2116685835002500
    蓝方2号机2118784050002500
    下载: 导出CSV

    表  12  尾后态势下空间占位初始参数设置

    Table  12.   Initial parameter setting of space occupancy in rear situation

    无人机x/my/mz/m速度/(m·s−1)航向
    /(°)
    红方1号机4833734535002500
    蓝方1号机2116685835002500
    蓝方2号机2118784050002500
    下载: 导出CSV

    表  13  战场环境与战术合理性选择

    Table  13.   Rational selection of battlefield environment and tactics

    高度层DAPAHDOVDOCDOLAEA
    高空层
    (10000 ~20000 m)
    中间层
    (3000 ~10000 m)
    低空层
    (1000 ~3000 m)
    下载: 导出CSV
  • [1] MA Y, WANG G, HU X, et al. Cooperative occupancy decision making of multi-UAV in beyond-visual-range air combat: a game theory approach[J]. IEEE Access, 2020, 8: 11624-11634. doi: 10.1109/ACCESS.2019.2933022
    [2] HEEMIN S, JAEHYUN L, HYUNGI K, et al. An autonomous aerial combat framework for two-on-two engagements based on basic fighter maneuvers[J]. Aerospace Science and Technology, 2018, 72(2): 305-315.
    [3] 邓海军, 尹全军, 胡记文, 等. 基于MEBN的战术意图识别[J]. 系统工程与电子技术, 2010, 32(11): 2374-2379.

    DENG H J, YIN Q J, HU J W, et al. Tactical intention recognition based on multi-entity Bayesian network[J]. Systems Engineering and Electronics, 2010, 32(11): 2374-2379(in Chinese).
    [4] ZHAO J, YANG B. Graph model of group conflict decision making based on grey correlation[J]. Paper Asia, 2019, 2(2): 128-132.
    [5] LI Q, DIAO Y, GONG Z, et al. Grey language hesitant fuzzy group decision making method based on kernel and grey scale[J]. International Journal of Environmental Research and Public Health, 2018, 15(3): 436-450. doi: 10.3390/ijerph15030436
    [6] ZHOU T, CHEN M, WANG Y, et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22(3): 279-290. doi: 10.3390/e22030279
    [7] QINGXIAN W U, CHEN S, LIU Z, et al. Prediction of unmanned aerial vehicle target intention under incomplete information[J]. Scientia Sinica Informationis, 2020, 50(5): 704-717. doi: 10.1360/SSI-2019-0106
    [8] AHMED A A, MOHAMMED M F. SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network[J]. Journal of Computational Science, 2018, 25(3): 467-473.
    [9] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 200-208. doi: 10.7527/S1000-6893.2018.22468

    ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 200-208(in Chinese). doi: 10.7527/S1000-6893.2018.22468
    [10] LI Y, HAN W, WANG Y. Deep reinforcement learning with application to air confrontation intelligent decision-making of manned/unmanned aerial vehicle cooperative system[J]. IEEE Access, 2020, 8: 67887-67898. doi: 10.1109/ACCESS.2020.2985576
    [11] 欧微, 柳少军, 贺筱媛, 等. 基于时序特征编码的目标战术意图识别算法[J]. 指挥控制与仿真, 2016, 38(6): 36-41. doi: 10.3969/j.issn.1673-3819.2016.06.008

    OU W, LIU S J, HE X Y, et al. Tactical intention recognition algorithm based on encoded temporal features[J]. Command Control & Simulation, 2016, 38(6): 36-41(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.06.008
    [12] WANG H, WANG L, YU Q, et al. Online reliability prediction via motifs-based dynamic Bayesian networks for service-oriented systems[J]. IEEE Transactions on Software Engineering, 2017, 43(6): 556-579. doi: 10.1109/TSE.2016.2615615
    [13] CARLO C, FATEMWH V, PETER C. Bayesian network hybrid learning using an elite-guided genetic algorithm[J]. Artificial Intelligence Review, 2019, 52(1): 245-272. doi: 10.1007/s10462-018-9615-5
    [14] SIQI N, MENG Z, QIANG J. The deep regression Bayesian network and its applications: Probabilistic deep learning for computer vision[J]. IEEE Signal Processing Magazine, 2018, 35(1): 101-111. doi: 10.1109/MSP.2017.2763440
    [15] CHOI A, WANG R, DARWICHE A. On the relative expressiveness of Bayesian and neural networks[J]. International Journal of Approximate Reasoning, 2019, 113: 303-323. doi: 10.1016/j.ijar.2019.07.008
    [16] GRUBER A, BEN-GAL I. A targeted Bayesian network learning for classification[J]. Quality Technology & Quantitative Management, 2019, 16(3): 243-261.
    [17] AJMAL H, MADDEN M G. Dynamic Bayesian network learning to infer sparse models from time series gene expression Data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 99(1): 1-12.
    [18] GEDUK S, ULUSOY L. A practical analysis of sample complexity for structure learning of discrete dynamic Bayesian networks[J]. Optimization, 2022, 71(10): 2935-2962. doi: 10.1080/02331934.2021.1892105
    [19] 孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46(7): 1267-1274. doi: 10.13700/j.bh.1001-5965.2019.0445

    MENG G L, ZHANG H M, PIAO H Y, et al. Recognition of fighter maneuver in automatic fight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1267-1274(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0445
    [20] HONDA A, JAMES S. Parameter learning and applications of the inclusion-exclusion integral for data fusion and analysis[J]. Information Fusion, 2020, 56: 28-38. doi: 10.1016/j.inffus.2019.10.004
    [21] KOVACIC J. Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach[J]. Expert Systems with Application, 2020, 141(1): 1-11.
    [22] WANG D, AMRILJAHARADAK A, XIAO Y. Dynamic knowledge inference based on Bayesian network learning[J]. Mathematical Problems in Engineering, 2020, 2020: 1-9.
    [23] HU J, QIN H, YAN T, et al. Corrected Bayesian information criterion for stochastic block models[J]. Journal of the American Statistical Association, 2019, 115(532): 1-43.
    [24] LIAO T F, FASANG A E. Comparing groups of life-course sequences using the Bayesian information criterion and the likelihood-ratio test[J]. Sociological Methodology, 2021, 51(1): 44-85. doi: 10.1177/0081175020959401
    [25] POIRION F. Monte Carlo approach for fatigue and damage calculation of nonlinear dynamical systems[J]. PAMM, 2015, 1(1): 460-461.
    [26] RAHRAH M, VERMOLEN F. Monte Carlo assessment of the impact of oscillatory and pulsating boundary conditions on the flow through porous media[J]. Transport in Porous Media, 2018, 123: 125-146. doi: 10.1007/s11242-018-1028-z
  • 加载中
图(16) / 表(13)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  103
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 录用日期:  2021-07-23
  • 网络出版日期:  2021-08-25
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答