Tropospheric scattering spectrum sensing based on sliding interception and signal correlation
-
摘要:
为提高对流层散射频谱感知的性能,提出了适应对流层散射多径衰落信道的频谱感知方案。针对对流层散射频谱感知性能低下的问题,在分集接收的基础上,分析对流层散射信道的时域扩散特性,提出滑动截获的方式截获信号,计算其最佳截获长度。同时,为降低噪声对检测性能的影响,利用信号的相关性,求出各截获窗内信号的相关矩阵,构造统计量,分别推导在Nakagami-m衰落信道模型下不同分集数时的检测概率和检测门限。通过仿真实验分析,验证在不同条件下所提频谱感知算法的性能,与传统算法相比,所提算法在对流层散射信道中适应性更好、性能更强。
Abstract:To improve the performance of tropospheric scattering spectrum sensing, a spectral sensing scheme for tropospheric scattering multipath fading channels is presented. To solve the problem of poor perception of the tropospheric scattering spectrum, the time-domain diffusion characteristics of the tropospheric scattering channel are analyzed based on the distributed reception. The sliding intercept method is proposed to intercept the signal, and the optimal intercept length is calculated. Secondly, in order to reduce the influence of noise on the detection performance, the correlation matrix of signals in each intercept window is obtained by using the signal correlation, and the statistics are constructed. For various numbers of diversity in the Nakagami-m fading channel model, the detection probability and detection threshold are computed. Finally, the performance of the spectrum sensing algorithm under different conditions is verified by simulation analysis. Compared with traditional methods, this method has a better adaptability and better performance in tropospheric scattering channels.
-
[1] 吴启晖, 任敬. 电磁频谱空间认知新范式: 频谱态势[J]. 南京航空航天大学学报, 2016, 48(5): 625-632.WU Q H, REN J. New paradigm of electromagnetic spectrum space: Spectrum situation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(5): 625-632(in Chinese). [2] 张余, 柳永祥, 张涛, 等. 电磁频谱战作战样式初探[J]. 航天电子对抗, 2017, 33(5): 14-17. doi: 10.16328/j.htdz8511.2017.05.004ZHANG Y, LIU Y X, ZHANG T, et al. The patterns of operations for the electromagnetic spectrum warfare[J]. Aerospace Electronic Warfare, 2017, 33(5): 14-17(in Chinese). doi: 10.16328/j.htdz8511.2017.05.004 [3] 陈真佳. 海上电磁频谱感知与预测方法研究[D]. 海口: 海南大学, 2020.CHEN Z J. Research on offshore electromagnetic spectrum sensing and prediction methods[D]. Haikou: Hainan University, 2020(in Chinese). [4] 李硕, 李祯静, 朱松, 等. 美军电磁频谱战发展分析及启示[J]. 中国电子科学研究院学报, 2020, 15(8): 721-724. doi: 10.3969/j.issn.1673-5692.2020.08.004LI S, LI Z J, ZHU S, et al. Development analysis and enlightenment of US army’s electromagnetic spectrum warfare[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(8): 721-724(in Chinese). doi: 10.3969/j.issn.1673-5692.2020.08.004 [5] 石玲花. 对流层散射信道特性研究[D]. 西安: 西安电子科技大学, 2020.SHI L H. Study on characteristics of tropospheric scattering channel[D]. Xi’an: Xidian University, 2020(in Chinese). [6] 张莹, 滕伟, 韩维佳, 等. 认知无线电频谱感知技术综述[J]. 无线电通信技术, 2015, 41(3): 12-16. doi: 10.3969/j.issn.1003-3114.2015.03.03ZHANG Y, TENG W, HAN W J, et al. Review of spectrum sensing techniques in cognitive radio networks[J]. Radio Communications Technology, 2015, 41(3): 12-16(in Chinese). doi: 10.3969/j.issn.1003-3114.2015.03.03 [7] 郭文祥, 余志勇, 逄晨, 等. 认知无线电频谱感知技术综述[J]. 通信技术, 2018, 51(2): 261-265. doi: 10.3969/j.issn.1002-0802.2018.02.001GUO W X, YU Z Y, PANG C, et al. Overview on cognitive radio spectrum sensing technology[J]. Communications Technology, 2018, 51(2): 261-265(in Chinese). doi: 10.3969/j.issn.1002-0802.2018.02.001 [8] SOOD V, SINGH M. On the performance of detection based spectrum sensing for cognitive radios[J]. IJECT, 2011, 2(3): 140-143. [9] LÓPEZ-BENÍTEZ M, CASADEVALL F. Improved energy detection spectrum sensing for cognitive radio[J]. IET Communications, 2012, 6(8): 785-796. doi: 10.1049/iet-com.2010.0571 [10] TARUNA S, BHUMIKA P. Simulation of cognitive radio using periodogram[J]. IJERT, 2013, 2(9): 2215-2222. [11] GHOLAMIPOUR A H, GORCIN A, CELEBI H, et al. Reconfigurable filter implementation of a matched-filter based spectrum sensor for cognitive radio systems[C]//IEEE International Symposium of Circuits and Systems. Piscataway: IEEE Press, 2011: 2457-2460. [12] SHARKASI Y F, MCLERNON D, GHOGHO M. Robust spectrum sensing in the presence of carrier frequency offset and phase noise for cognitive radio[C]//Wireless Telecommunications Symposium. Piscataway: IEEE Press, 2012: 1-5. [13] BOUALLEGUE K, DAYOUB I, GHARBI M, et al. Blind spectrum sensing using extreme eigenvalues for cognitive radio networks[J]. IEEE Communications Letters, 2018, 22(7): 1386-1389. doi: 10.1109/LCOMM.2017.2776147 [14] MEHRABIAN A, ZAIMBASHI A. Robust and blind eigenvalue-based multiantenna spectrum sensing under IQ imbalance[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5581-5591. doi: 10.1109/TWC.2018.2847357 [15] 孙际哲, 陈西宏, 胡邓华. 认知对流层散射通信中的频谱感知[J]. 无线电通信技术, 2018, 44(5): 449-452. doi: 10.3969/j.issn.1003-3114.2018.05.06SUN J Z, CHEN X H, HU D H. Spectrum sensing in cognitive troposcatter communications[J]. Radio Communications Technology, 2018, 44(5): 449-452(in Chinese). doi: 10.3969/j.issn.1003-3114.2018.05.06 [16] LI C L, CHEN X H, LIU X P. Cognitive tropospheric scatter communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1482-1491. doi: 10.1109/TVT.2017.2761440 [17] WANG M N, WANG Z, CHENG Z, et al. Target detection for a kind of troposcatter over-the-horizon passive radar based on channel fading information[J]. IET Radar, Sonar & Navigation, 2018, 12(4): 407-416. [18] 张明高. 对流层散射传播[M]. 北京: 电子工业出版社, 2004.ZHANG M G. Troposphere scatter propagation[M]. Beijing: Electronic Industry Press, 2004(in Chinese). [19] HERATH S P, RAJATHEVA N. Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels[C]//2008 IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2008: 1-5. [20] 王敬. 基于时、频域分析的对流层散射信号检测及DOA估计方法研究[D]. 长沙: 国防科学技术大学, 2016.WANG J. Research on tropospheric scatter signal detection and DOA estimation based on time, frequency domain analysis[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). [21] TRIPTA, KUMAR A, SAHA S. FFT-based multiband spectrum sensing in SIMO in-band full-duplex cognitive radio networks[J]. Radio Science, 2020, 55(6): e2019RS006974.