留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑动截获和信号相关的对流层散射频谱感知

米新平 陈西宏 刘强 曹宇飞 张爽 宋新成

米新平,陈西宏,刘强,等. 基于滑动截获和信号相关的对流层散射频谱感知[J]. 北京航空航天大学学报,2023,49(2):464-471 doi: 10.13700/j.bh.1001-5965.2021.0255
引用本文: 米新平,陈西宏,刘强,等. 基于滑动截获和信号相关的对流层散射频谱感知[J]. 北京航空航天大学学报,2023,49(2):464-471 doi: 10.13700/j.bh.1001-5965.2021.0255
MI X P,CHEN X H,LIU Q,et al. Tropospheric scattering spectrum sensing based on sliding interception and signal correlation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):464-471 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0255
Citation: MI X P,CHEN X H,LIU Q,et al. Tropospheric scattering spectrum sensing based on sliding interception and signal correlation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):464-471 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0255

基于滑动截获和信号相关的对流层散射频谱感知

doi: 10.13700/j.bh.1001-5965.2021.0255
基金项目: 国家自然科学基金(61701525)
详细信息
    通讯作者:

    E-mail: dreamlq@163.com

  • 中图分类号: TN911

Tropospheric scattering spectrum sensing based on sliding interception and signal correlation

Funds: National Natural Science Foundation of China (61701525)
More Information
  • 摘要:

    为提高对流层散射频谱感知的性能,提出了适应对流层散射多径衰落信道的频谱感知方案。针对对流层散射频谱感知性能低下的问题,在分集接收的基础上,分析对流层散射信道的时域扩散特性,提出滑动截获的方式截获信号,计算其最佳截获长度。同时,为降低噪声对检测性能的影响,利用信号的相关性,求出各截获窗内信号的相关矩阵,构造统计量,分别推导在Nakagami-m衰落信道模型下不同分集数时的检测概率和检测门限。通过仿真实验分析,验证在不同条件下所提频谱感知算法的性能,与传统算法相比,所提算法在对流层散射信道中适应性更好、性能更强。

     

  • 图 1  对流层散射信道时域扩散图

    Figure 1.  Time domain diffusion map of tropospheric scattering channels

    图 2  对流层散射信道频谱感知方案

    Figure 2.  Spectrum sensing scheme for tropospheric scattering channels

    图 3  信号增益随截获窗长度变化的仿真曲线

    Figure 3.  Simulation curve of signal gain with intercept length

    图 4  接收机操作特性曲线

    Figure 4.  Receiver operating characteristic curves

    图 5  检测性能随信噪比的变化曲线

    Figure 5.  Variation curves of detection performance with signal-to-noise ratio

    图 6  理论结果和实际结果对比曲线

    Figure 6.  Comparison curves between theoretical and practical results

    图 7  不同算法检测性能比较

    Figure 7.  Comparison of detection performance of different algorithms

  • [1] 吴启晖, 任敬. 电磁频谱空间认知新范式: 频谱态势[J]. 南京航空航天大学学报, 2016, 48(5): 625-632.

    WU Q H, REN J. New paradigm of electromagnetic spectrum space: Spectrum situation[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(5): 625-632(in Chinese).
    [2] 张余, 柳永祥, 张涛, 等. 电磁频谱战作战样式初探[J]. 航天电子对抗, 2017, 33(5): 14-17. doi: 10.16328/j.htdz8511.2017.05.004

    ZHANG Y, LIU Y X, ZHANG T, et al. The patterns of operations for the electromagnetic spectrum warfare[J]. Aerospace Electronic Warfare, 2017, 33(5): 14-17(in Chinese). doi: 10.16328/j.htdz8511.2017.05.004
    [3] 陈真佳. 海上电磁频谱感知与预测方法研究[D]. 海口: 海南大学, 2020.

    CHEN Z J. Research on offshore electromagnetic spectrum sensing and prediction methods[D]. Haikou: Hainan University, 2020(in Chinese).
    [4] 李硕, 李祯静, 朱松, 等. 美军电磁频谱战发展分析及启示[J]. 中国电子科学研究院学报, 2020, 15(8): 721-724. doi: 10.3969/j.issn.1673-5692.2020.08.004

    LI S, LI Z J, ZHU S, et al. Development analysis and enlightenment of US army’s electromagnetic spectrum warfare[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(8): 721-724(in Chinese). doi: 10.3969/j.issn.1673-5692.2020.08.004
    [5] 石玲花. 对流层散射信道特性研究[D]. 西安: 西安电子科技大学, 2020.

    SHI L H. Study on characteristics of tropospheric scattering channel[D]. Xi’an: Xidian University, 2020(in Chinese).
    [6] 张莹, 滕伟, 韩维佳, 等. 认知无线电频谱感知技术综述[J]. 无线电通信技术, 2015, 41(3): 12-16. doi: 10.3969/j.issn.1003-3114.2015.03.03

    ZHANG Y, TENG W, HAN W J, et al. Review of spectrum sensing techniques in cognitive radio networks[J]. Radio Communications Technology, 2015, 41(3): 12-16(in Chinese). doi: 10.3969/j.issn.1003-3114.2015.03.03
    [7] 郭文祥, 余志勇, 逄晨, 等. 认知无线电频谱感知技术综述[J]. 通信技术, 2018, 51(2): 261-265. doi: 10.3969/j.issn.1002-0802.2018.02.001

    GUO W X, YU Z Y, PANG C, et al. Overview on cognitive radio spectrum sensing technology[J]. Communications Technology, 2018, 51(2): 261-265(in Chinese). doi: 10.3969/j.issn.1002-0802.2018.02.001
    [8] SOOD V, SINGH M. On the performance of detection based spectrum sensing for cognitive radios[J]. IJECT, 2011, 2(3): 140-143.
    [9] LÓPEZ-BENÍTEZ M, CASADEVALL F. Improved energy detection spectrum sensing for cognitive radio[J]. IET Communications, 2012, 6(8): 785-796. doi: 10.1049/iet-com.2010.0571
    [10] TARUNA S, BHUMIKA P. Simulation of cognitive radio using periodogram[J]. IJERT, 2013, 2(9): 2215-2222.
    [11] GHOLAMIPOUR A H, GORCIN A, CELEBI H, et al. Reconfigurable filter implementation of a matched-filter based spectrum sensor for cognitive radio systems[C]//IEEE International Symposium of Circuits and Systems. Piscataway: IEEE Press, 2011: 2457-2460.
    [12] SHARKASI Y F, MCLERNON D, GHOGHO M. Robust spectrum sensing in the presence of carrier frequency offset and phase noise for cognitive radio[C]//Wireless Telecommunications Symposium. Piscataway: IEEE Press, 2012: 1-5.
    [13] BOUALLEGUE K, DAYOUB I, GHARBI M, et al. Blind spectrum sensing using extreme eigenvalues for cognitive radio networks[J]. IEEE Communications Letters, 2018, 22(7): 1386-1389. doi: 10.1109/LCOMM.2017.2776147
    [14] MEHRABIAN A, ZAIMBASHI A. Robust and blind eigenvalue-based multiantenna spectrum sensing under IQ imbalance[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5581-5591. doi: 10.1109/TWC.2018.2847357
    [15] 孙际哲, 陈西宏, 胡邓华. 认知对流层散射通信中的频谱感知[J]. 无线电通信技术, 2018, 44(5): 449-452. doi: 10.3969/j.issn.1003-3114.2018.05.06

    SUN J Z, CHEN X H, HU D H. Spectrum sensing in cognitive troposcatter communications[J]. Radio Communications Technology, 2018, 44(5): 449-452(in Chinese). doi: 10.3969/j.issn.1003-3114.2018.05.06
    [16] LI C L, CHEN X H, LIU X P. Cognitive tropospheric scatter communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1482-1491. doi: 10.1109/TVT.2017.2761440
    [17] WANG M N, WANG Z, CHENG Z, et al. Target detection for a kind of troposcatter over-the-horizon passive radar based on channel fading information[J]. IET Radar, Sonar & Navigation, 2018, 12(4): 407-416.
    [18] 张明高. 对流层散射传播[M]. 北京: 电子工业出版社, 2004.

    ZHANG M G. Troposphere scatter propagation[M]. Beijing: Electronic Industry Press, 2004(in Chinese).
    [19] HERATH S P, RAJATHEVA N. Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels[C]//2008 IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2008: 1-5.
    [20] 王敬. 基于时、频域分析的对流层散射信号检测及DOA估计方法研究[D]. 长沙: 国防科学技术大学, 2016.

    WANG J. Research on tropospheric scatter signal detection and DOA estimation based on time, frequency domain analysis[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [21] TRIPTA, KUMAR A, SAHA S. FFT-based multiband spectrum sensing in SIMO in-band full-duplex cognitive radio networks[J]. Radio Science, 2020, 55(6): e2019RS006974.
  • 加载中
图(7)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  121
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答