留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞翼布局飞行器结构拓扑优化设计

王一为 雷锐午 汪辉

王一为,雷锐午,汪辉. 飞翼布局飞行器结构拓扑优化设计[J]. 北京航空航天大学学报,2023,49(2):482-490 doi: 10.13700/j.bh.1001-5965.2021.0262
引用本文: 王一为,雷锐午,汪辉. 飞翼布局飞行器结构拓扑优化设计[J]. 北京航空航天大学学报,2023,49(2):482-490 doi: 10.13700/j.bh.1001-5965.2021.0262
WANG Y W,LEI R W,WANG H. Structural topology optimization of flying wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):482-490 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0262
Citation: WANG Y W,LEI R W,WANG H. Structural topology optimization of flying wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):482-490 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0262

飞翼布局飞行器结构拓扑优化设计

doi: 10.13700/j.bh.1001-5965.2021.0262
详细信息
    作者简介:

    王一为:男,硕士研究生。主要研究方向:飞行器设计

    雷锐午:男,博士研究生,主要研究方向:飞行器设计与优化

    汪辉:男,博士,副教授,博士生导师。主要研究方向:多孔介质传热、飞行器能源管理

    通讯作者:

    E-mail:wanghui2018@nwpu.edu.cn

  • 中图分类号: V272;TB553

Structural topology optimization of flying wing aircraft

More Information
  • 摘要:

    飞翼布局飞行器由于具有气动效率高的优势,将成为未来航空飞行器发展的主流方向,然而结构质量限制了其性能的进一步提升,结构优化是实现结构减重的重要技术。以飞翼布局飞行器内部结构为研究对象,建立拓扑优化模型,以柔顺度作为目标函数,探究飞翼布局飞行器全机内部结构的最优布置方式,分析弯曲梁构件在飞翼布局飞行器结构优化中的作用和减重机制,根据拓扑优化结果建立重构模型,同时依据Boeing第二代结构设计建立标准模型,使用尺寸优化评估重构模型相较于标准模型的减重效果。结果表明:在等柔顺度时,重构模型相比标准模型质量减少14.53%;在等质量时,重构模型相比标准模型全机柔顺度降低47.90%,并减少了44.87%的z向最大位移,拓扑优化减重和增加刚度效果显著,验证了弯曲梁构件的减重作用。研究结果可为飞翼布局飞行器结构减重优化奠定基础,建立的优化评估机制可为飞翼布局飞行器的内部结构设计提供参考。

     

  • 图 1  N3-X模型

    Figure 1.  N3-X model

    图 2  结构优化设计流程

    Figure 2.  Flowchart of structural optimization

    图 3  拓扑优化问题求解流程

    Figure 3.  Flowchart of topology optimization

    图 4  N3-X有限元模型

    Figure 4.  Finite element model of N3-X

    图 5  CFD结构网格

    Figure 5.  Structured mesh for CFD

    图 6  机体柔顺度为优化目标的拓扑优化迭代历程

    Figure 6.  Iteration history with body compliance as optimization object

    图 7  蒙皮柔顺度为优化目标的拓扑优化迭代历程

    Figure 7.  Iteration history with skin compliance as optimization object

    图 8  拓扑优化结果

    Figure 8.  Result of topology optimization

    图 9  拓扑优化结果的重构模型

    Figure 9.  Rebuilt model for topology optimization

    图 10  标准模型结构布置

    Figure 10.  Standard model configuration

    图 11  重构模型结构布置

    Figure 11.  Rebuilt model configuration

    图 12  重构模型和标准模型的有限元模型

    Figure 12.  Finite element model of rebuilt model and standard model

    图 13  标准模型和重构模型的设计变量分布

    Figure 13.  Distribution of design variables of standard model and rebuilt model

    图 14  标准模型和重构模型的尺寸优化迭代过程

    Figure 14.  Iteration history of sizing optimization for standard model and rebuilt model

    图 15  质量约束和柔顺度约束的尺寸优化结果

    Figure 15.  Sizing optimization with mass and compliance constraint

    图 16  z向位移对比

    Figure 16.  Comparison of displacement in z direction

    图 17  拓扑优化设计与尺寸优化

    Figure 17.  Topology optimization design and sizing optimization

    表  1  材料属性

    Table  1.   Material properties

    物理属性密度/(kg·m−3)弹性模量/MPa泊松比
    数值2780720000.3
    下载: 导出CSV

    表  2  优化结果

    Table  2.   Optimization results

    模型质量/kg柔顺度
    标准构型23782513250
    重构模型123782267406
    (47.90%↓)
    重构模型220327
    (14.53%↓)
    513250
    下载: 导出CSV
  • [1] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 51-67.

    KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 51-67(in Chinese).
    [2] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 624037.

    HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037(in Chinese).
    [3] FELDER J, TONG M, CHU J. Sensitivity of mission energy consumption to turboelectric distributed propulsion design assumptions on the N3-X hybrid wing body aircraft[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012: 3701.
    [4] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Trade studies for NASA N3-X turboelectric distributed propulsion system electrical power system architecture[J]. SAE International Journal of Aerospace, 2012, 5(2): 325-336. doi: 10.4271/2012-01-2163
    [5] VOGEL A, JUNKER P. Adaptive thermodynamic topology optimization[J]. Structural and Multidisciplinary Optimization, 2021, 63(1): 95-119. doi: 10.1007/s00158-020-02667-4
    [6] ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures: A review[J]. Applied Mechanics Reviews, 2001, 54(4): 331-390.
    [7] KROG L, TUCKER A, KEMP M, et al. Topology optimisation of aircraft wing box ribs[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004: 4481.
    [8] SONG L L, GAO T, TANG L, et al. An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Computers & Structures, 2021, 243(5): 35-47.
    [9] MAUTE K, ALLEN M. Conceptual design of aeroelastic structures by topology optimization[J]. Structural and Multidisciplinary Optimization, 2004, 27(1): 27-42.
    [10] AAGE N, ANDREASSEN E, LAZAROV B, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86.
    [11] LOCATELLI D, MULANI S B, KAPANIA R K. Wing-box weight optimization using curvilinear spars and ribs (SpaRibs)[J]. Journal of Aircraft, 2011, 48(5): 1671-1684.
    [12] ZHU J H, ZHANG W H, XIA L. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. doi: 10.1007/s11831-015-9151-2
    [13] LIOU M F, KIM H, LEE B, et al. Aerodynamic design of integrated propulsion–Airframe configuration of a hybrid wing body aircraft[J]. Shock Waves, 2019, 29(8): 1043-1064. doi: 10.1007/s00193-019-00933-z
    [14] GOLDBERG C, NALIANDA D, PILIDIS P, et al. Economic viability assessment of NASA’s blended wing body N3-X aircraft[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017: 4604.
    [15] ROZVANY G I N, ZHOU M, BIRKER T. Generalized shape optimization without homogenization[J]. Structural Optimization, 1992, 4(3-4): 250-252. doi: 10.1007/BF01742754
    [16] BENDSØE M, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69: 635-654. doi: 10.1007/s004190050248
    [17] BARCLAY A. SQP methods for large-scale optimization[D]. San Diego: University of California, 1999: 76-78.
    [18] KIM H, LIOU M F. Flow simulation and drag decomposition study of N3-X hybrid wing-body configuration[J]. Aerospace Science & Technology, 2019, 85(2): 24-39.
    [19] ROBINSON J H, DOYLE S, OGAWA G, et al. Aeroservoelastic optimization of wing structure using curvilinear spars and ribs (SpaRibs)[C]//17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016: 3994.
    [20] JUTTE C V, STANFORD B K, WIESEMAN C D. Internal structural design of the common research model wing box for aeroelastic tailoring[R]. Washington, D. C. : NASA, 2015: 23-39.
    [21] JEGLEY D C, PRZEKOP A, LOVEJOY A E, et al. Structural response of a stitched composite hybrid wing body center section[J]. Journal of Aircraft, 2021, 58(3): 580-590. doi: 10.2514/1.C035911
    [22] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084
    [23] KENNEDY G J, MARTINS J R R A. A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures[J]. Finite Elements in Analysis and Design, 2014, 87(9): 56-73.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  8
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 录用日期:  2021-11-12
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回
    常见问答