留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低轨卫星气动舵机辅助姿态控制方法设计

王涛 焦洪臣 刘杰 陈乐宇 张迎春

王涛,焦洪臣,刘杰,等. 超低轨卫星气动舵机辅助姿态控制方法设计[J]. 北京航空航天大学学报,2023,49(3):548-558 doi: 10.13700/j.bh.1001-5965.2021.0265
引用本文: 王涛,焦洪臣,刘杰,等. 超低轨卫星气动舵机辅助姿态控制方法设计[J]. 北京航空航天大学学报,2023,49(3):548-558 doi: 10.13700/j.bh.1001-5965.2021.0265
WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0265
Citation: WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0265

超低轨卫星气动舵机辅助姿态控制方法设计

doi: 10.13700/j.bh.1001-5965.2021.0265
基金项目: 国家自然科学基金(62005015)
详细信息
    作者简介:

    王涛等:超低轨卫星气动舵机辅助姿态控制方法设计 13

    通讯作者:

    E-mail:jhccast@163.com

  • 中图分类号: V474.2;TB553

Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear

Funds: National Natural Science Foundation of China (62005015)
More Information
  • 摘要:

    针对超低轨卫星姿态控制差异化需求,开展了基于气动舵机辅助的姿态控制策略研究。完成了超低轨道稀薄大气下卫星气动舵机布局设计与气动特性研究,理论气动力可达10−1 N量级,气动力矩可达10−1 N·m量级。在此基础上,完成了基于气动舵机辅助的姿态控制策略研究。通过仿真验证,在x轴采用动量轮控制、y轴和z轴采用气动舵机辅助控制情况下,可实现优于0.004°的三轴指向精度和优于0.0007(°)/s的三轴姿态稳定度。所设计气动舵机辅助姿态控制策略对超低轨卫星技术应用与发展具有重要技术价值和工程意义。

     

  • 图 1  超低轨卫星气动构型示意图

    Figure 1.  Pneumatic structure of ultra-low-orbit satellite

    图 2  超低轨卫星初步设计尺寸

    Figure 2.  Preliminary design dimension of ultra-low-orbit satellite

    图 3  超低轨卫星主副翼转角定义示意图

    Figure 3.  Definition of rotation angles of main wings and ailerons of ultra-low-orbit satellite

    图 4  x轴气动力及力矩随姿态角变化

    Figure 4.  Change of aerodynamic force and moment of x-axis with satellite attitude

    图 5  y轴气动力及力矩随姿态角变化

    Figure 5.  Change of aerodynamic force and moment of y-axis with satellite attitude

    图 6  z轴气动力及力矩随姿态角变化

    Figure 6.  Change of aerodynamic force and moment of z-axis with satellite attitude

    图 7  星体姿态角度变化对气动力矩的影响

    Figure 7.  Change of aerodynamic moment with satellite attitude

    图 8  不同来流方向下气动力与气动力矩

    Figure 8.  Change of aerodynamic force and moment with air flow direction

    图 9  气动力随主翼面转角的变化

    Figure 9.  Change of aerodynamic force with rotation angle of main wings

    图 10  气动力矩随副翼面转角的变化

    Figure 10.  Change of aerodynamic moment with rotation angle of ailerons

    图 11  采用气动舵机辅助的姿态控制框图

    Figure 11.  Block diagram of attitude control with pneumatic steering gear

    图 12  主翼偏转不同角度时气动力矩随副翼面转角的变化

    Figure 12.  Change of aerodynamic moment with rotation angle of ailerons for different rotation angles of main wings

    图 13  仿真流程

    Figure 13.  Flowchart of simulation

    图 14  气动舵机辅助下的卫星姿态稳定过程

    Figure 14.  Stabilization process of satellite attitude under assistance of pneumatic steering gear

    图 15  气动舵机辅助下的卫星姿态角速度稳定过程

    Figure 15.  Stabilization process of satellite angular velocity under assistance of pneumatic steering gear

    图 16  气动舵机偏转角度

    Figure 16.  Deflection angle of pneumatic steering gear

    图 17  舵机气动力矩

    Figure 17.  Aerodynamic torque of steering gear

    图 18  舵机气动干扰力矩

    Figure 18.  Aerodynamic disturbance torque of steering gear

    图 19  动量轮输出力矩

    Figure 19.  Output torque of momentum wheel

    表  1  仿真参数设置

    Table  1.   Simulation parameters setting

    参数实际高度
    h/km
    来流速度
    V/(m·s−1)
    法向动量
    适应系数σn
    切向动量
    适应系数στ
    数值20075000.990.99
    下载: 导出CSV

    表  2  气动力矩与副翼偏转对照关系

    Table  2.   Relationship between aerodynamic moment and rotation angle of ailerons

    主翼面转角所需气动力矩为正所需气动力矩为负
    主翼面转角为正(20°, 0.11 N·m)(−20°, −0.13 N·m)
    主翼面转角为零(80°, 0.256 N·m)(−80°, −0.256 N·m)
    主翼面转角为负(20°, 0.13 N·m)(−20°, −0.11 N·m)
    下载: 导出CSV

    表  3  仿真参数说明

    Table  3.   Description of simulation parameters

    参数数值
    初始姿态角/(°)[−10,20,10]
    初始姿态角速度/((°)·s−1)[0,0,0]
    x轴转动惯量Jx/(kg·m2)600
    y轴转动惯量Jy/(kg·m2)2000
    z轴转动惯量Jz/(kg·m2)2000
    动量轮转动惯量/(kg·m2)0.008
    动量轮组每根轴输出力矩上限/(N·m)0.2
    动量轮组每根轴角动量上限/(N·m·s)3
    动量轮初始动量/(N·m·s)[0,0,0]
    期望姿态角/(°)[0,0,0]
    期望姿态角速度/((°)·s−1)[0,0,0]
    下载: 导出CSV

    表  4  仿真加入的随机干扰

    Table  4.   Random disturbance in simulations

    误差类型随机干扰的3σ
    姿态角测量偏差/(°)[0.01,0.01,0.01]
    姿态角速度测量偏差/((°)·s−1)[0.001,0.001,0.001]
    动量轮组角加速度控制偏差/((°)·s−2)0.001
    气动翼转角控制偏差/(°)0.01
    下载: 导出CSV
  • [1] BACON A, OLIVIER B S. Bringing down the cost of earth observation[C]//Proceedings of the 12th Reinventing Space Conference. Berlin: Springer, 2017: 1-7.
    [2] ROBERT P C E, ROMANO F, HERDRICH G, et al. Keynote: Discoverer-making commercial satellite operations in very low earth orbit a reality[C]//70th International Astronautical Congress (IAC). Reston: AIAA, 2019: 21-25.
    [3] DE FLORIO S, D’AMICO S, RADICE G. Virtual formation method for precise autonomous absolute orbit control[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 425-438. doi: 10.2514/1.61575
    [4] DE FLORIO S, D’AMICO S, RADICE G. Precise autonomous orbit control in low earth orbit[C]//Astrodynamics Specialist Conference. Reston: AIAA, 2012: 4811.
    [5] WERTZ J R, SHAO A, TAYLOR C, et al. Moderately elliptical very low orbits (MEVLOs) as a long-term solution to orbital debris[C]//26th Annual AIAA/USU Conference on Small Satelites. Reston: AIAA, 2012: SSC12-IV-6.
    [6] 吴勤. 透视俄罗斯军用卫星发展现状[J]. 太空探索, 2008(12): 46-49.

    WU Q. Perspective of Russian military satellite development status[J]. Space Exploration, 2008(12): 46-49(in Chinese).
    [7] 曾其鋆. 气动力矩在超低轨道卫星姿态控制方面的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 41-56.

    ZENG Q J. Applications of aerodynamic torque to ultra-low-orbit satellite attitude control[D]. Harbin: Harbin Institute of Technology, 2009: 41-56(in Chinese).
    [8] 田春华, 马广富, 李传江, 等. 三轴稳定卫星姿态控制系统的一般性问题[J]. 自动化技术与应用, 2001(1): 9-12.

    TIAN C H, MA G F, LI C J, et al. General problems of satellite attitude control[J]. Techniques of Automation and Applications, 2001(1): 9-12(in Chinese).
    [9] 黄静. 三轴稳定航天器姿态最优控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 75-78.

    HUANG J. Optimal attitude control for three-axis stabilized spacecrafts[D]. Harbin: Harbin Institute of Technology, 2010: 75-78(in Chinese).
    [10] 段广仁, 钟震, 姜苍华. 航天器的一种无源自适应姿态控制方法[J]. 哈尔滨工业大学学报, 2011, 43(5): 1-7. doi: 10.11918/j.issn.0367-6234.2011.05.001

    DUAN G R, ZHONG Z, JIANG C H. One scheme of passive adaptive attitude control for spacecraft[J]. Journal of Harbin Institute of Technology, 2011, 43(5): 1-7(in Chinese). doi: 10.11918/j.issn.0367-6234.2011.05.001
    [11] 邵汉斌. 基于滑模控制的超低轨道航天器姿态控制方法研究[D]. 长沙: 国防科学技术大学, 2014: 12-16.

    SHAO H B. Ultra-low-orbit spacecraft attitude control based on sliding mode control[D]. Changsha: National University of Defense Technology, 2014: 12-16(in Chinese).
    [12] KUMAR R R, MAZANEK D D, HECK M L. Simulation and Shuttle Hitchhiker validation of passive satellite aerostabilization[J]. Journal of Spacecraft and Rockets, 1995, 32(5): 806-811.
    [13] KUMAR R R, MAZANEK D D, HECK M L. Parametric and classical resonance in passive satellite aerostabilization[J]. Journal of Spacecraft and Rockets, 1996, 33(2): 228-234. doi: 10.2514/3.26745
    [14] PSIAKI M L. Spacecraft attitude stabilization using passive aerodynamics and acting magnetic torquing: AIAA-2003-5420[R]. Reston: AIAA, 2003.
    [15] PSIAKI M L. Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 386-394. doi: 10.2514/2.4723
    [16] GUETTLER D B. Satellite attitude control using atmospheric drag [D]. Dayton: Air Force Institute of Technology, 2007: 23-33.
    [17] 刘辉, 伍斯宾斯基. 利用喷气装置卸载航天器积累角动量的最小工质损耗控制[J]. 航天控制, 2004, 22(5): 32-35. doi: 10.3969/j.issn.1006-3242.2004.05.008

    LIU H, USPENSKY V B. Minimize propellant consumption during gyro system unloading process of spacecraft[J]. Aerospace Control, 2004, 22(5): 32-35(in Chinese). doi: 10.3969/j.issn.1006-3242.2004.05.008
    [18] 张利宾. 基于磁控和轮控的微小卫星姿态控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 26-51.

    ZHANG L B. Study on attitude control algorithm for micro-satellite using magnetotorquers and reaction wheels[D]. Harbin: Harbin Institute of Technology, 2007: 26-51(in Chinese).
    [19] 李太玉, 张育林. 基于能量最优解析解的飞轮磁卸载方法[J]. 上海航天, 2006, 23(6): 1-9. doi: 10.19328/j.cnki.1006-1630.2006.06.001

    LI T Y, ZHANG Y L. Momentum magnetic unloading basing on analytic equation of energy optimization[J]. Aerospace Shanghai, 2006, 23(6): 1-9(in Chinese). doi: 10.19328/j.cnki.1006-1630.2006.06.001
    [20] STEIGER C, ROMANAZZO M, EMANUELLI P P. The deorbiting of ESA’s gravity mission GOCE–Spacecraft operations in extreme drag conditions[C]//International Conference on Space Operations. Reston: AIAA, 2014: 1934.
    [21] 何慧东. 日本“超低轨道技术试验卫星”任务及应用[J]. 国际太空, 2018(9): 50-53. doi: 10.3969/j.issn.1009-2366.2018.09.010

    HE H D. Japan’s super low altitude test satellite mission and application[J]. Space International, 2018(9): 50-53(in Chinese). doi: 10.3969/j.issn.1009-2366.2018.09.010
    [22] 温生林. 超低轨道卫星动力学建模与控制方法研究[D]. 长沙: 国防科学技术大学, 2016: 20-35.

    WEN S L. Dynamic modeling and flight control for super low altitude satellite[D]. Changsha: National University of Defense Technology, 2016: 20-35(in Chinese).
    [23] 周伟勇, 张育林, 刘昆. 超低轨航天器气动力分析与减阻设计[J]. 宇航学报, 2010, 31(2): 342-348. doi: 10.3873/j.issn.1000-1328.2010.02.007

    ZHOU W Y, ZHANG Y L, LIU K. Aerodynamics analysis and reduced drag design for the lower LEO spacecraft[J]. Journal of Astronautics, 2010, 31(2): 342-348(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.02.007
    [24] 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18. doi: 10.3969/j.issn.1673-8748.2016.01.002

    HU L Y, ZHANG L H, CHENG X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25(1): 10-18(in Chinese). doi: 10.3969/j.issn.1673-8748.2016.01.002
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  100
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 录用日期:  2021-10-22
  • 网络出版日期:  2021-11-02
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答