留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电感特征的开关磁阻电机电流斩波控制策略

陈越 蒋启龙 王金锁 姚卫丰

陈越,蒋启龙,王金锁,等. 基于电感特征的开关磁阻电机电流斩波控制策略[J]. 北京航空航天大学学报,2023,49(3):647-656 doi: 10.13700/j.bh.1001-5965.2021.0269
引用本文: 陈越,蒋启龙,王金锁,等. 基于电感特征的开关磁阻电机电流斩波控制策略[J]. 北京航空航天大学学报,2023,49(3):647-656 doi: 10.13700/j.bh.1001-5965.2021.0269
CHEN Y,JIANG Q L,WANG J S,et al. Current chopping control strategy of switched reluctance motor based on inductance characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):647-656 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0269
Citation: CHEN Y,JIANG Q L,WANG J S,et al. Current chopping control strategy of switched reluctance motor based on inductance characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):647-656 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0269

基于电感特征的开关磁阻电机电流斩波控制策略

doi: 10.13700/j.bh.1001-5965.2021.0269
详细信息
    通讯作者:

    E-mail:double_long@126.com

  • 中图分类号: TM352

Current chopping control strategy of switched reluctance motor based on inductance characteristics

More Information
  • 摘要:

    开关磁阻电机(SRM)运行在基速以下时常采用电流斩波控制(CCC),针对传统电流斩波控制中电流动态跟踪能力弱、换相区内转矩脉动大及功率器件开关频率不固定的问题,根据电感曲线的变化特征进行区间分段,提出一种基于参考电流补偿的电流斩波控制策略。在低电感区段内根据电机转速、负载的大小对参考电流进行补偿,提高相绕组在换相过程中的转矩输出能力和动态响应能力;在电感曲线的线性上升阶段,采用固定频率的脉冲宽度调制(PWM)波进行控制,使输出转矩更平滑。搭建三相12/8极开关磁阻电机仿真模型及硬件在环实验平台,考虑电机在不同转速、负载下的运行工况,选取转矩脉动指标进行对比。仿真与实验结果表明:所提控制策略能有效减小开关磁阻电机的转矩脉动,提高电机的运行性能。

     

  • 图 1  斩波控制下瞬时相电流波形

    Figure 1.  Instantaneous current waveform controlled by chopper

    图 2  电流软斩波示意图

    Figure 2.  Schematic diagram of soft chopping current control

    图 3  样机I=6 A时电感曲线及$\partial L/ \partial \theta $曲线

    Figure 3.  Curves of inductance and $\partial L/ \partial \theta $ for prototype I=6 A

    图 4  样机电感曲线簇与$\partial L/ \partial \theta $曲线簇

    Figure 4.  Curve clusters of inductance and $\partial L/ \partial \theta $ of prototype

    图 5  开通角在线调节流程

    Figure 5.  Flow chart of online adjustment of turn-on angle

    图 6  电流控制器PWM调制图

    Figure 6.  PWM diagram of current controller

    图 7  电流软斩波控制系统框图

    Figure 7.  Block diagram of soft chopping current control system

    图 8  参考电流补偿值曲面

    Figure 8.  Compensation surface of reference current

    图 9  n=300 r/min,TL=30 N∙m仿真结果

    Figure 9.  Simulation results at n=300 r/min and TL=30 N∙m

    图 10  典型换相转矩波形

    Figure 10.  Typical commutation torque waveform

    图 11  n=500 r/min,TL=30 N∙m仿真结果

    Figure 11.  Simulation results at n=500 r/min and TL=30 N∙m

    图 12  n=1000 r/min,TL=30 N∙m仿真结果

    Figure 12.  Simulation results at n=1000 r/min and TL=30 N∙m

    图 13  n=300 r/min,TL=10 N∙m实验结果

    Figure 13.  Experimental results at n=300 r/min and TL=10 N∙m

    图 14  n=300 r/min,TL=30 N∙m实验结果

    Figure 14.  Experimental results at n=300 r/min and TL=30 N∙m

    图 15  n=500 r/min,TL=10 N∙m实验结果

    Figure 15.  Experimental results at n=500 r/min and TL=10 N∙m

    图 16  n=500 r/min,TL=30 N∙m实验结果

    Figure 16.  Experimental results at n=500 r/min and TL=30 N∙m

    图 17  TL=10 N∙m时转矩脉动系数对比

    Figure 17.  Comparison of torque ripple coefficient at TL=10 N∙m

    图 18  TL=30 N∙m时转矩脉动系数对比

    Figure 18.  Comparison of torque ripple coefficient at TL=30 N∙m

  • [1] ZUO S G, LIU M T, HU S L, et al. Torque ripple reduction of switched reluctance motor by optimising switch angle based on analytical modelling[J]. IET Electric Power Applications, 2020, 14(8): 1488-1495. doi: 10.1049/iet-epa.2019.0776
    [2] 匡斯建, 张小平, 刘苹, 等. 基于相电感非饱和区定位的开关磁阻电机无位置传感器控制方法[J]. 电工技术学报, 2020, 35(20): 4296-4305. doi: 10.19595/j.cnki.1000-6753.tces.191077

    KUANG S J, ZHANG X P, LIU P, et al. Sensorless control method for switched reluctance motors based on locations of phase inductance characteristic points[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4296-4305(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.191077
    [3] YE J, BILGIN B, EMADI A. An offline torque sharing function for torque ripple reduction in switched reluctance motor drives[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 726-735. doi: 10.1109/TEC.2014.2383991
    [4] XUE X D, CHENG K W E, HO S L. Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives[J]. IEEE Transactions on Power Electronics, 2009, 24(9): 2076-2090. doi: 10.1109/TPEL.2009.2019581
    [5] 颜宁, 曹鑫, 邓智泉. 基于全桥变换器的开关磁阻电机直接转矩控制[J]. 中国电机工程学报, 2018, 38(S1): 235-242.

    YAN N, CAO X, DENG Z Q. Direct torque control of switched reluctance motors based on full-bridge converter[J]. Proceedings of the CSEE, 2018, 38(S1): 235-242 (in Chinese).
    [6] YAN N, CAO X, DENG Z Q. Direct torque control for switched reluctance motor to obtain high torque–ampere ratio[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5144-5152. doi: 10.1109/TIE.2018.2870355
    [7] 程勇, 曹晓晓, 张怡龙. 开关磁阻电机滞环-脉宽调制直接瞬时转矩控制[J]. 电机与控制学报, 2020, 24(8): 74-82. doi: 10.15938/j.emc.2020.08.010

    CHENG Y, CAO X X, ZHANG Y L. Hysteresis-PWM direct instantaneous torque control of switched reluctance motor[J]. Electric Machines and Control, 2020, 24(8): 74-82(in Chinese). doi: 10.15938/j.emc.2020.08.010
    [8] LIANG J, LEE D H, AHN J W. Direct instantaneous torque control of switched reluctance machines using 4-level converters[J]. IET Electric Power Applications, 2009, 3(4): 313-323. doi: 10.1049/iet-epa.2008.0002
    [9] 朱叶盛, 章国宝, 黄永明. 基于PWM的开关磁阻电机直接瞬时转矩控制[J]. 电工技术学报, 2017, 32(7): 31-39. doi: 10.19595/j.cnki.1000-6753.tces.2017.07.004

    ZHU Y S, ZHANG G B, HUANG Y M. PWM-based direct instantaneous torque control of switched reluctance machine[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 31-39(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.2017.07.004
    [10] 王喜莲, 许振亮. 基于PI参数自适应的开关磁阻电机调速控制研究[J]. 中国电机工程学报, 2015, 35(16): 4215-4223. doi: 10.13334/j.0258-8013.pcsee.2015.16.025

    WANG X L, XU Z L. Speed regulation control of switched reluctance motors based on PI parameter self-adaptation[J]. Proceedings of the CSEE, 2015, 35(16): 4215-4223(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2015.16.025
    [11] DÚBRAVKA P, RAFAJDUS P, MAKYŠ P, et al. Control of switched reluctance motor by current profiling under normal and open phase operating condition[J]. IET Electric Power Applications, 2017, 11(4): 548-556. doi: 10.1049/iet-epa.2016.0543
    [12] 蔡辉, 王辉, 李孟秋, 等. 基于预测电流控制算法的开关磁阻电机转矩脉动抑制策略[J]. 中国电机工程学报, 2019, 39(16): 4899-4909. doi: 10.13334/j.0258-8013.pcsee.171488

    CAI H, WANG H, LI M Q, et al. Predictive current control of switched reluctance motor for torque ripples minimization[J]. Proceedings of the CSEE, 2019, 39(16): 4899-4909(in Chinese). doi: 10.13334/j.0258-8013.pcsee.171488
    [13] LIN Z Y, REAY D S, WILLIAMS B W, et al. Torque ripple reduction in switched reluctance motor drives using B-spline neural networks[J]. IEEE Transactions on Industry Applications, 2006, 42(6): 1445-1453. doi: 10.1109/TIA.2006.882671
    [14] LI C H, WANG G F, LI Y, et al. Robust adaptive neural network control for switched reluctance motor drives[J]. Automatika, 2018, 59(1): 24-34. doi: 10.1080/00051144.2018.1486797
    [15] 潘再平, 罗星宝. 基于迭代学习控制的开关磁阻电机转矩脉动抑制[J]. 电工技术学报, 2010, 25(7): 51-55. doi: 10.19595/j.cnki.1000-6753.tces.2010.07.009

    PAN Z P, LUO X B. Torque ripple minimization of switched reluctance motor based on iterative learning control[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 51-55(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.2010.07.009
    [16] XU Y Z, ZHONG R, CHEN L, et al. Analytical method to optimise turn-on angle and turn-off angle for switched reluctance motor drives[J]. IET Electric Power Applications, 2012, 6(9): 593-603. doi: 10.1049/iet-epa.2012.0157
  • 加载中
图(18)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  82
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 录用日期:  2022-01-16
  • 网络出版日期:  2022-03-11
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答