留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天遥感器用泵驱两相流体回路热真空试验研究

孟庆亮 赵振明 陈祥贵 朱许

孟庆亮,赵振明,陈祥贵,等. 航天遥感器用泵驱两相流体回路热真空试验研究[J]. 北京航空航天大学学报,2023,49(3):559-568 doi: 10.13700/j.bh.1001-5965.2021.0270
引用本文: 孟庆亮,赵振明,陈祥贵,等. 航天遥感器用泵驱两相流体回路热真空试验研究[J]. 北京航空航天大学学报,2023,49(3):559-568 doi: 10.13700/j.bh.1001-5965.2021.0270
MENG Q L,ZHAO Z M,CHEN X G,et al. Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):559-568 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0270
Citation: MENG Q L,ZHAO Z M,CHEN X G,et al. Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):559-568 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0270

航天遥感器用泵驱两相流体回路热真空试验研究

doi: 10.13700/j.bh.1001-5965.2021.0270
基金项目: 国家自然科学基金(51806010)
详细信息
    作者简介:

    孟庆亮等:航天遥感器用泵驱两相流体回路热真空试验研究 7

    通讯作者:

    E-mail:qlmeng@mail.ustc.edu.cn

  • 中图分类号: V416;TK124

Thermal vacuum test study of mechanically pumped two-phase loop for space remote sensor

Funds: National Natural Science Foundation of China (51806010)
More Information
  • 摘要:

    针对航天遥感器核心组件的高精度与高稳定度的控温需求,设计并搭建了一套泵驱两相流体回路(MPTL)试验装置,该装置使用了一套具有被动冷却能力的两相控温型储液器。为验证MPTL系统在高真空、极低温与变化外热流条件下的工作能力,在真空罐内对MPTL系统在不同工况点下的散热与控温能力进行了测试,并通过温度和压力等数据研究了主回路的运行特性、储液器内热力学变化特性及两者之间的传热传质过程。结果表明:MPTL系统的控温点可通过储液器进行快速调整,蒸发器温度的变化受外热流与热源开关影响较小;进入毛细管中的过冷液与储液器中的液相形成的温差保证了储液器冷量的供应;主回路发生相态转变时,储液器与主回路工质交换特性引起了系统压力降脉动。

     

  • 图 1  MPTL系统组成

    Figure 1.  Schematic diagram of MPTL system

    图 2  MPTL系统实物图(不含辐射冷凝器)

    Figure 2.  Photograph of MPTL system (not including radiator)

    图 3  MPTL系统内工质压焓变化示意图

    Figure 3.  Pressure-enthalpy diagram of fluid in MPTL system

    图 4  屏蔽式离心泵实物图

    Figure 4.  Photograph of shield centrifugal micropump

    图 5  两相控温型储液器实物图

    Figure 5.  Photograph of two-phase thermal-controlled accumulator

    图 6  两相控温型储液器冷却过程示意图

    Figure 6.  Schematic diagram of cooling process in two-phase thermal-controlled accumulator

    图 7  3D打印蒸发器实物图

    Figure 7.  Photograph of evaporator by 3D printing

    图 8  蒸发器内部流道

    Figure 8.  Internal flow channel of evaporator

    图 9  蒸发器及模拟热源空间布置

    Figure 9.  Spatial layout of evaporators and simulated heat sources

    图 10  MPTL产品真空罐放置图

    Figure 10.  Layout of MPTL in vacuum tank

    图 11  MPTL启动时储液器上测点温度变化曲线

    Figure 11.  Temperature variation in measuring points of accumulator during MPTL start up

    图 12  MPTL启动时系统绝对压力变化曲线

    Figure 12.  Variations in absolute system pressure during MPTL start up

    图 13  MPTL启动时储液器气相温度与压力拟合温度对比

    Figure 13.  Comparison between vapor temperature and fitting temperature from saturated pressure during MPTL start up

    图 14  模拟热源开关机时蒸发器测点温度变化曲线

    Figure 14.  Temperature variations in measuring points of evaporators during heat loads start up and power off

    图 15  模拟热源开关机时换热器测点温度变化曲线

    Figure 15.  Temperature variations in measure points of heat-exchanger during heat loads start up and power off

    图 16  工况2储液器测点温度变化曲线

    Figure 16.  Temperature variations in measuring points of accumulator for test condition 2

    图 17  工况2蒸发器测点温度变化曲线

    Figure 17.  Temperature variations in measuring points of evaporators for test condition 2

    图 18  两相段生成后储液器测点温度变化趋势

    Figure 18.  Temperature variations in measuring points of accumulator after two phase generation

    图 19  两相段生成后系统压力变化趋势

    Figure 19.  Pressure variations of system after two phase generation

    图 20  两相段生成后储液器功率变化趋势

    Figure 20.  Variations in power applied on accumulator after two phase generation

    图 21  MPTL系统压力降脉动简化模型

    Figure 21.  Schematic diagram of pressure-drop oscillations for MPTL system

    表  1  MPTL系统主要参数

    Table  1.   Main parameters of MPTL system

    参数数值
    两相管路直径/mm外径4.0,内径3.0
    单相管路直径/mm外径3.175,内径2.06
    管路总长度/m20.0
    辐射冷凝器面积0.32 m2;发射率0.86
    储液器体积/L0.53
    冷凝器控温功率/W20.0
    预热器功率/W40.0
    蒸发器功率/W45.0
    下载: 导出CSV

    表  2  外热流随时间周期变化值

    Table  2.   Temporal variation of external heat flux

    加载时间/s功率/W
    0~63410.8
    635~207924.1
    2080~264650.7
    2647~421829.8
    4219~567110.8
    下载: 导出CSV

    表  3  试验工况

    Table  3.   Test items

    工况系统工作点试验内容
    120 ℃测试流体回路启动特性,储液器控温稳定性及
    蒸发器温度稳定性
    210 ℃测试储液器升降温速率,系统运行的稳定性
    下载: 导出CSV
  • [1] GREGORY T H, ABEL J, MANDI J. Thermal design considerations of the hubble space telescope (HST) science instrument control and data handler (SI C&DH-2) : AIAA 2010-6055[R]. Reston: AIAA, 2010.
    [2] 李春林. 空间光学遥感器热控技术研究[J]. 宇航学报, 2014, 35(8): 863-870.

    LI C L. Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8): 863-870(in Chinese).
    [3] VAN ES J, VAN GERNER H J, VAN BENTHEM R C. Component developments in Europe for mechanically pumped loop systems (MPLs) for cooling applications in space[C]//46th International Conference on Environmental Systems, 2016: ICES-2016-196.
    [4] VAN ES J, PAUW A, VAN DONK G, et al. AMS02 tracker thermal control cooling system test results of the AMS02 thermal vacuum test in the ISS at ESA ESTEC : AIAA-2012-3577[R]. Reston: AIAA, 2012.
    [5] VAN ES J, PAUW A, VAN GERNER H J, et al. AMS02 tracker thermal control cooling system commissioning and operational results: AIAA-2013-3389[R]. Reston: AIAA, 2013.
    [6] 于新刚, 徐侃, 苗建印, 等. 高热流散热泵驱两相流体回路设计及飞行验证[J]. 宇航学报, 2017, 38(2): 192-197.

    YU X G, XU K, MIAO J Y, et al. Design and on-board validation of pumped two-phase fluid loop for high heat flux removal[J]. Journal of Astronautics, 2017, 38(2): 192-197(in Chinese).
    [7] 王镇锐, 张兴斌, 温世喆, 等. 结合TEC的泵驱两相温控系统的空间应用[J]. 宇航学报, 2018, 39(10): 1176-1184. doi: 10.3873/j.issn.1000-1328.2018.10.014

    WANG Z R, ZHANG X B, WEN S Z, et al. Space applications of pumped two-phase temperature control system combined with TEC[J]. Journal of Astronautics, 2018, 39(10): 1176-1184(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.10.014
    [8] 刘杰. 航天机械泵驱动两相流冷却环路循环特性的研究[D]. 上海: 上海交通大学, 2008.

    LIU J. Investigations on running characteristics of the mechanically pumped cooling loop for space applications[D]. Shanghai: Shanghai Jiaotong University, 2008(in Chinese).
    [9] 孙西辉. 机械泵驱动CO2两相流体回路稳定性研究[D]. 广州: 中山大学, 2010.

    SUN X H. Stabilities research of the mechanically pumped two-phase CO2 loop[D]. Guangzhou: Sun Yat-sen University, 2010(in Chinese).
    [10] 刘长鑫, 张济民, 徐涛, 等. 泵驱动两相流体回路流量漂移现象的试验研究 [J]. 上海航天, 2017, 34(4): 125-132.

    LIU C X, ZHANG J M, XU T, et al. Experimental research on flow excursion of mechanically pumped two-phase loop[J]. Aerospace Shanghai, 2017, 34(4): 125-132(in Chinese).
    [11] 赵振明, 孟庆亮, 张焕冬, 等. CCD器件用机械泵驱动两相流体回路仿真与试验[J]. 北京航空航天大学学报, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519

    ZHAO Z M, MENG Q L, ZHANG H D, et al. Simulation and experimental study of mechanically pumped two-phase loop for CCD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 893-901(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0519
    [12] 黄臻成. 航天热控用机械驱动两相系统的数值模拟及控温特性分析[D]. 广州: 中山大学, 2008.

    HUANG Z C. Numerical simulation and thermal control characteristic of the space mechanically pumped two-phase CO2 loop[D]. Guangzhou: Sun Yat-sen University, 2008(in Chinese).
    [13] 袁俊飞, 唐大伟, 曹宏章. 泵驱动相变冷却系统中储液器压力响应特性[J]. 航空动力学报, 2015, 30(10): 2384-2390. doi: 10.13224/j.cnki.jasp.2015.10.012

    YUAN J F, TANG D W, CAO H Z. Response characteristics of accumulator pressure in pumped phase-change cooling system[J]. Journal of Aerospace Power, 2015, 30(10): 2384-2390(in Chinese). doi: 10.13224/j.cnki.jasp.2015.10.012
    [14] VAN GERNER H J, BRAAKSMA N. Transient modelling of pumped two-phase cooling systems: comparison between experiment and simulation[C]//46th International Conference on Environmental Systems, 2016: ICES-2016-004.
    [15] VAN GERNER H J, BOLDER R, VAN ES J. Transient modelling of pumped two-phase cooling systems: comparison between experiment and simulation with R134a[C]//47th International Conference on Environmental Systems, 2017: ICES-2017-037.
    [16] 孟庆亮, 张焕冬, 赵振明. 两相控温型储液器进出流量的瞬态数值模拟[J]. 北京航空航天大学学报, 2019, 45(11): 2160-2169.

    MENG Q L, ZHANG H D, ZHAO Z M. Transient numerical simulations of flow rate into and out of two-phase temperature control accumulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2160-2169(in Chinese).
    [17] 孟庆亮, 周振华, 赵振明. 用于微重力下两相控温型储液器性能研究[J]. 工程热物理学报, 2021, 42(7): 1770-1776.

    MENG Q L, ZHOU Z H, ZHAO Z M. Performance study of two-phase thermal-controlled accumulator for microgravity environment[J]. Journal of. Engineering Thermophysics, 2021, 42(7): 1770-1776(in Chinese).
    [18] 杜王芳, 乐述文, 赵建福, 等. 多相热流体系统中的重力无关性准则[J]. 河北水利电力学院学报, 2019, 29(2): 1-7.

    DU W F, YUE S W, ZHAO J F, et al. Criteria of gravity independence in multiphase thermal fluid system[J]. Journal of Hebei University of Water Resources and Electric Engineering, 2019, 29(2): 1-7(in Chinese).
    [19] LEMMON E W, HUBER M L, MCLINDEN M O. NIST standard reference database 23. NIST reference fluid thermodynamic and transport properties database (REFPROP). version 8.0. Standard reference data[Z]. Gaithersburg: NIST, 2007.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  95
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-03-24
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答