留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS外辐射源雷达低慢小目标探测概率

苗铎 杨东凯 许志超 王峰 吴世玉

苗铎,杨东凯,许志超,等. GNSS外辐射源雷达低慢小目标探测概率[J]. 北京航空航天大学学报,2023,49(3):657-664 doi: 10.13700/j.bh.1001-5965.2021.0271
引用本文: 苗铎,杨东凯,许志超,等. GNSS外辐射源雷达低慢小目标探测概率[J]. 北京航空航天大学学报,2023,49(3):657-664 doi: 10.13700/j.bh.1001-5965.2021.0271
MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0271
Citation: MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0271

GNSS外辐射源雷达低慢小目标探测概率

doi: 10.13700/j.bh.1001-5965.2021.0271
基金项目: 中国博士后创新人才支持计划(BX20200039)
详细信息
    通讯作者:

    E-mail:wangf.19@163.com

  • 中图分类号: V19;TN958.97

Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals

Funds: The Postdoctoral Innovative Talents Support Program (BX20200039)
More Information
  • 摘要:

    尽管全球导航卫星系统(GNSS)外辐射源雷达具有信号源广泛、覆盖率高、容易进行时间同步等特点,受到了国内外研究机构的广泛关注,但由于卫星位置变化和单颗卫星的目标探测性能有限,难以满足实际探测需求。根据几何构型给出GNSS外辐射源雷达双基地角计算方式,仿真研究双基地角与目标雷达散射截面积(RCS)的关系,分析探测时间与目标最大探测距离的关系,得到目标探测概率的理论表达式,并据此评估基于GPS L5信号的外辐射源雷达在单星、多源融合及前后向协同探测模式的目标探测概率。仿真结果表明:单星前向和后向探测模式的有效探测时间覆盖率不足1 %,采用前后向协同及多源融合的探测方式,可有效提升GNSS外辐射源雷达的目标探测性能至25 %;通过采用连续扫描检测的方式实时改变接收天线的照射方向进行目标探测,在前后向协同的多源融合探测模式下,有效探测时间覆盖率达到98.96 %,基本满足全天时有效探测需求。

     

  • 图 1  双基地雷达三维空间几何构型

    Figure 1.  Three-dimensional geometric configuration of bistatic radar

    图 2  金属圆柱体模型

    Figure 2.  Metal cylinder model

    图 3  不同极化情况下的RCS仿真结果

    Figure 3.  RCS simulation results under different polarization conditions

    图 4  最大探测距离随积分时间及非相干累加次数的变化

    Figure 4.  Variation of the maximum detection distance at different integration time and incoherent accumulation times

    图 5  目标检测概率随SNR的变化

    Figure 5.  Variation of target detection probability with SNR

    图 6  目标检测概率随探测距离的变化

    Figure 6.  Variation of target detection probability with detection distance

    图 7  目标检测概率随双基地角的变化

    Figure 7.  Variation of target detection probability under different bistatic angle

    图 8  单颗卫星的目标探测概率

    Figure 8.  Target detection probability of a single satellite

    图 9  多源融合的目标探测概率

    Figure 9.  Target detection probability with multi-satellites

    图 10  前后向协同情况下多源融合的目标探测概率

    Figure 10.  Target detection probability under backscattering and forward scattering condition with multi-satellites

    图 11  连续检测情况下单颗卫星的目标探测概率

    Figure 11.  Target detection probability under continuous detection of a single satellite

    图 12  连续检测情况下多源融合的目标探测概率

    Figure 12.  Target detection probability under continuous detection with multi-satellites

  • [1] 李刚. 新体制雷达及其关键技术[J]. 电子技术与软件工程, 2019(15): 60-62.

    LI G. New system radar and its key technology[J]. Electronic Technology & Software Engineering, 2019(15): 60-62(in Chinese).
    [2] 朱庆明, 吴曼青. 一种新型无源探测与跟踪雷达系统——“沉默哨兵”[J]. 现代电子, 2000(1): 1-6.

    ZHU Q M, WU M Q, Silent sentry: A novel passive detecting and tracking radar system[J]. Modern Electronics, 2000(1): 1-6(in Chinese).
    [3] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939-958. doi: 10.12000/JR20143

    WAN X R, YI J X, ZHAN W J, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939-958(in Chinese). doi: 10.12000/JR20143
    [4] ZAIMBASHI A. Broadband target detection algorithm in FM-based passive bistatic radar systems[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1485-1499.
    [5] RAJA ABDULLAH R S A, ALHAJI MUSA S, ABDUL RASHID N E, et al. Passive forward-scattering radar using digital video broadcasting satellite signal for drone detection[J]. Remote Sensing, 2020, 12(18): 3075. doi: 10.3390/rs12183075
    [6] ZEMMARI R, DAUN M, FELDMANN M, et al. Maritime surveillance with GSM passive radar: detection and tracking of small agile targets[C]//International Radar Symposium. Piscataway: IEEE Press, 2013: 245-251.
    [7] ILIOUDIS C, CLEMENTE C, SORAGHAN J. GNSS-based passive UAV monitoring: A feasibility study[J]. IET Radar, Sonar & Navigation, 2020, 14(4): 516-524.
    [8] 胡程, 刘长江, 曾涛. 双基地前向散射雷达探测与成像[J]. 雷达学报, 2016, 5(3): 229-243.

    HU C, LIU C J, ZENG T. Bistatic forward scattering radar detection and imaging[J]. Journal of Radars, 2016, 5(3): 229-243(in Chinese).
    [9] CHERNIAKOV M, ABDULLAH R S A R, JANČOVIČ P, et al. Automatic ground target classification using forward scattering radar[J]. IEE Proceedings: Radar, Sonar and Navigation, 2006, 153(5): 427-437. doi: 10.1049/ip-rsn:20050028
    [10] SIZOV V, CHERNIAKOV M, ANTONIOU M. Forward scattering radar power budget analysis for ground targets[J]. IET Radar, Sonar & Navigation, 2007, 1(6): 437-446.
    [11] HRISTOV S, DANIEL L, HOARE E, et al. Target shadow profile reconstruction in ground-based forward scatter radar[C]//IEEE Radar Conference. Piscataway: IEEE Press, 2015: 846-851.
    [12] GASHINOVA M, DANIEL L, SIZOV V, et al. Phenomenology of Doppler forward scatter radar for surface targets observation[J]. IET Radar, Sonar & Navigation, 2013, 7(4): 422-432.
    [13] MARRA M, DE LUCA A, HRISTOV S, et al. New algorithm for signal detection in passive FSR[C]//IEEE Radar Conference. Piscataway: IEEE Press, 2015: 218-223.
    [14] CONTU M, DE LUCA A, HRISTOV S, et al. Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1067-1087. doi: 10.1109/TAES.2017.2649198
    [15] DE LUCA A, DANIEL L, GASHINOVA M, et al. Target parameter estimation in moving transmitter moving receiver forward scatter radar[C]//International Radar Symposium. Piscataway: IEEE Press, 2017: 1-7.
    [16] 胡程, 龙腾, 曾涛, 等. 前向散射雷达地表杂波物理建模及频谱扩展分析[J]. 中国科学:信息科学, 2010, 40(12): 1646-1659.

    HU C, LONG T, ZENG T, et al. Physical modeling and spectrum spread analysis of ground clutter in forward scattering radar[J]. Scientia Sinica(Informationis), 2010, 40(12): 1646-1659(in Chinese).
    [17] 胡程, 刘长江, 曾涛, 等. 双基地前向散射雷达杂波分析与模拟方法[J]. 信号处理, 2013, 29(3): 293-303. doi: 10.3969/j.issn.1003-0530.2013.03.002

    HU C, LIU C J, ZENG T, et al. Statistical analysis and simulation method of forward scattering clutter in bistatic radar[J]. Journal of Signal Processing, 2013, 29(3): 293-303(in Chinese). doi: 10.3969/j.issn.1003-0530.2013.03.002
    [18] 李文海, 董锡超, 胡程. 前向散射雷达海面目标探测信号建模与分析[J]. 信号处理, 2019, 35(6): 994-1001. doi: 10.16798/j.issn.1003-0530.2019.06.009

    LI W H, DONG X C, HU C. Signal modeling and analysis of forward scatter radar in sea surface target detection[J]. Journal of Signal Processing, 2019, 35(6): 994-1001(in Chinese). doi: 10.16798/j.issn.1003-0530.2019.06.009
    [19] GLASER J I. Bistatic RCS of complex objects near forward scatter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(1): 70-78. doi: 10.1109/TAES.1985.310540
    [20] 马骉. 雷达散射截面积的特征提取算法研究与电路设计[D]. 西安: 西安电子科技大学, 2017: 8-10.

    MA B. Algorithm research and circuit design on feature extraction of radar cross section[D]. Xi’an: Xidian University, 2017: 8-10(in Chinese).
    [21] 伍岳, 罗和平, 邱蕾. L5载波的信号质量分析[J]. 测绘工程, 2014, 23(12): 8-11. doi: 10.3969/j.issn.1006-7949.2014.12.003

    WU Y, LUO H P, QIU L. Quality analysis of GPS L5 signal[J]. Engineering of Surveying and Mapping, 2014, 23(12): 8-11(in Chinese). doi: 10.3969/j.issn.1006-7949.2014.12.003
    [22] BEHAR V, KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]//International Radar Symposium. Piscataway: IEEE Press, 2011 : 212-217.
    [23] MIKHAIL C. 双基地雷达: 一项新兴技术[M]. 陈筠力, 译. 北京: 中国宇航出版社, 2015: 385.

    MIKHAIL C. Bistatic radar: Emerging technology[M]. CHEN J L, translated. Beijing: China Astronautic Publishing House, 2015: 385(in Chinese).
    [24] BASSEM R M, ATEF Z E. 雷达系统设计MATLAB仿真[M]. 朱国富, 黄晓涛, 黎向阳, 等译. 北京: 电子工业出版社, 2016: 49-65.

    BASSEM R M, ATEF Z E. MATLAB simulations for radar systems design[M]. ZHU G F, HUANG X T, LI X Y, et al, translated. Beijing: Publishing House of Electronics Industry, 2016: 49-65(in Chinese).
  • 加载中
图(12)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  113
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-08-22
  • 网络出版日期:  2021-09-14
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答