留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大行程柔性微定位平台的伴生转动分析

孟刚 黄河 吴伟官 居勇健 曹毅

孟刚,黄河,吴伟官,等. 大行程柔性微定位平台的伴生转动分析[J]. 北京航空航天大学学报,2023,49(3):665-673 doi: 10.13700/j.bh.1001-5965.2021.0272
引用本文: 孟刚,黄河,吴伟官,等. 大行程柔性微定位平台的伴生转动分析[J]. 北京航空航天大学学报,2023,49(3):665-673 doi: 10.13700/j.bh.1001-5965.2021.0272
MENG G,HUANG H,WU W G,et al. Parasitic rotation of large stroke compliant micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):665-673 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0272
Citation: MENG G,HUANG H,WU W G,et al. Parasitic rotation of large stroke compliant micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):665-673 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0272

大行程柔性微定位平台的伴生转动分析

doi: 10.13700/j.bh.1001-5965.2021.0272
基金项目: 江苏省“六大人才高峰”计划(ZBZZ-012);高等学校学科创新引智计划(B18027);江苏省研究生创新计划(KYCX20-1925)
详细信息
    通讯作者:

    E-mail:caoyi@jiangnan.edu.cn

  • 中图分类号: V414.5;TH122

Parasitic rotation of large stroke compliant micro-positioning platform

Funds: The Six Talent Peaks in Jiangsu Province (ZBZZ-012); Overseas Expertise Introduction Project for Discipline Innovation (B18027); Postgraduate Research and Practice Innovation of Jiangsu Province (KYCX20-1925)
More Information
  • 摘要:

    大行程柔性微定位平台在运动过程中不可避免地产生伴生转动现象,并对其定位精度造成消极影响。为降低伴生转动对平台定位精度的影响,提出一种基于柔性杆的三移一转(3-PPPR)型大行程柔性微定位平台,基于线弹性梁理论模型并考虑柔性杆轴向形变,对两移一转(PPR)柔性运动副伴生转角进行了理论建模,并基于此完成了对所提平台在单轴、双轴及三轴驱动时产生伴生转角的理论分析;再采用有限元分析对理论模型进行验证。最后探究了柔性杆尺寸参数与平台伴生转角之间的灵敏度关系,为所提平台性能提升奠定了基础,并据此提出了改善所提平台运动性能的优化方案。结果表明:3种驱动条件下平台伴生转角理论值与仿真值最大相对误差为2.46%。

     

  • 图 1  PPR型柔性运动副

    Figure 1.  PPR compliant kinematic joint

    图 2  PPPR支链结构

    Figure 2.  Structure of PPPR branch chain

    图 3  3-PPPR平台结构示意图

    Figure 3.  Structure of 3-PPPR micro-positioning platform

    图 4  柔性固定导向梁受力分析

    Figure 4.  Force analysis of compliant fixed guide beam

    图 5  PPR运动副伴生转动示意图

    Figure 5.  Schematic diagram of parasitic rotation of PPR joint

    图 6  外四杆结构受力形变示意图

    Figure 6.  Deformation of external beams subjected to horizontal force

    图 7  外四杆结构受力矩形变示意图

    Figure 7.  Deformation of external beams subjected to moment

    图 8  内四杆结构受力形变示意图

    Figure 8.  Deformation of internal beams subjected to horizontal force

    图 9  内四杆结构受力偶形变示意图

    Figure 9.  Deformation of internal beams subjected to moment

    图 10  PPPR型柔性支链伴生转动示意图

    Figure 10.  Schematic diagram of parasitic rotation of PPPR limb

    图 11  单轴驱动平台伴生转动示意图

    Figure 11.  Parasitic rotations of uni-axis driven platform

    图 12  平台伴生转动原理图

    Figure 12.  Schematic diagram of parasitic rotation of platform

    图 13  双轴驱动平台伴生转动示意图

    Figure 13.  Parasitic rotations of bi-axis driven platform

    图 14  三轴驱动平台伴生转动示意图

    Figure 14.  Parasitic rotations of tri-axis driven platform

    图 15  不同驱动条件下平台的仿真分析

    Figure 15.  Simulation analysis of platform under different driving conditions

    图 16  支链及平台伴生转角

    Figure 16.  Parasitic rotational angles of limb and platform

    图 17  平台伴生转角与柔性杆尺寸参数之间的关系

    Figure 17.  Relationship between beam parameters and parasitic rotation of platform

    表  1  平台材料及尺寸参数

    Table  1.   Material and dimension parameters of platform

    参数数值参数数值
    l/mm40弹性模量E/GPa71.7
    t/mm1剪切模量G/GPa26.9
    d/mm24泊松比ν0.33
    s/mm6屈服强度σ/MPa503
    L/mm47密度ρ/(kg·m−3)2 810
    D/mm25
    下载: 导出CSV

    表  2  平台伴生转角理论、仿真值及其相对误差

    Table  2.   Theoretical values, simulation values and relative errors of parasitic rotational angles

    运动状态伴生转角理论值/rad仿真值/rad相对误差/%
    单支链${\theta _{{\text{limb}}}}$8.96×10−48.77×10−42.12
    x单轴$\theta _y^x$4.48×10−44.39×10−42.01
    $\theta _z^x$4.48×10−44.40×10−41.79
    xy
    双轴
    $\theta _x^{xy}$4.48×10−44.37×10−42.46
    $\theta _y^{xy}$4.48×10−44.42×10−41.34
    $\theta _z^{xy}$01.2×10−7
    xyz
    三轴
    $\theta _x^{xyz}$04.0×10−7
    $\theta _y^{xyz}$08.8×10−7
    $\theta _z^{xyz}$04.0×10−7
    下载: 导出CSV
  • [1] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. doi: 10.3901/JME.2015.13.053

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68(in Chinese). doi: 10.3901/JME.2015.13.053
    [2] HOWELL L L. Compliant mechanisms[M]. New York: John Wiley and Sons, 2001: 2-14.
    [3] 贾晓辉, 刘今越, 田延岭. 空间全柔性并联机构动力学分析[J]. 农业机械学报, 2012, 43(8): 210-214. doi: 10.6041/j.issn.1000-1298.2012.08.038

    JIA X H, LIU J Y, TIAN Y L. Dynamics analysis of spatial compliant parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 210-214(in Chinese). doi: 10.6041/j.issn.1000-1298.2012.08.038
    [4] 周睿, 周辉, 桂和利, 等. 基于柔性铰链的二自由度微动平台分析及优化[J]. 北京航空航天大学学报, 2018, 44(9): 1982-1990.

    ZHOU R, ZHOU H, GUI H L, et al. Analysis and optimization of 2-DoF micro-positioning stage based on flexible hinges[J]. Journal of Beijing University of Aeronautics and Astronautics. 2018, 44(9): 1982-1990 (in Chinese).
    [5] 曹毅, 王保兴, 孟刚, 等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报, 2020, 56(17): 71-81. doi: 10.3901/JME.2020.17.071

    CAO Y, WANG B X, MENG G, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81(in Chinese). doi: 10.3901/JME.2020.17.071
    [6] 王萍萍, 刘磊. 柔性航天器高精度隔振与定向研究[J]. 宇航学报, 2012, 33(9): 1195-1202.

    WANG P P, LIU L. Research on high accuracy pointing of the flexible spacecraft with Stewart platform[J]. Journal of Astronautics, 2012, 33(9): 1195-1202(in Chinese).
    [7] 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 523899.

    LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523899(in Chinese).
    [8] DI GIAMBERARDINO P, BAGOLINI A, BELLUTTI P, et al. New MEMS tweezers for the viscoelastic characterization of soft materials at the microscale[J]. Micromachines, 2017, 9(1): 15. doi: 10.3390/mi9010015
    [9] 李杨民, 汤晖, 徐青松, 等. 面向生物医学应用的微操作机器人技术发展态势[J]. 机械工程学报, 2011, 47(23): 1-13. doi: 10.3901/JME.2011.23.001

    LI Y M, TANG H, XU Q S, et al. Development status of micromanipulator technology for biomedical applications[J]. Journal of Mechanical Engineering, 2011, 47(23): 1-13(in Chinese). doi: 10.3901/JME.2011.23.001
    [10] WANG R Z, ZHANG X M. A planar 3-DOF nanopositioning platform with large magnification[J]. Precision Engineering, 2016, 46: 221-231. doi: 10.1016/j.precisioneng.2016.04.016
    [11] HAO G B, KONG X W. Design and modeling of a large-range modular XYZ compliant parallel manipulator using identical spatial modules[J]. Journal of Mechanisms and Robotics, 2012, 4(2): 1-10.
    [12] 牟新明, 王建华, 杨密. 平行簧片机构力学分析与计算[J]. 纳米技术与精密工程, 2005, 3(4): 278-282. doi: 10.13494/j.npe.2005.051

    MU X M, WANG J H, YANG M. Mechanical analysis and computation of parallel springs[J]. Nanotechnology and Precision Engineering, 2005, 3(4): 278-282(in Chinese). doi: 10.13494/j.npe.2005.051
    [13] LUO Y Q, LIU W Q. Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate[J]. Mechanism and Machine Theory, 2014, 80: 151-165. doi: 10.1016/j.mechmachtheory.2014.06.005
    [14] HAO G B. Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi-function applications[J]. Mechanical Sciences, 2013, 4(2): 291-302. doi: 10.5194/ms-4-291-2013
    [15] HAO G B, LI H Y. Design of 3-legged XYZ compliant parallel manipulators with minimised parasitic rotations[J]. Robotica, 2015, 33(4): 787-806. doi: 10.1017/S0263574714000575
    [16] SU H J, SHI H, YU J J. A symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms[J]. Journal of Mechanical Design, 2012, 134(5): 051009. doi: 10.1115/1.4006441
    [17] AWTAR S, USTICK J, SEN S. An XYZ parallel kinematic flexure mechanism with geometrically decoupled degrees of freedom[J]. Journal of Mechanisms and Robotics, 2013, 5(1): 015001. doi: 10.1115/1.4007768
    [18] LIN H R, CHENG C H, HUNG S K. Design and quasi-static characteristics study on a planar piezoelectric nanopositioner with ultralow parasitic rotation[J]. Mechatronics, 2015, 31(1): 180-188.
    [19] DONG W, SUN L N, DU Z J. Design of a precision compliant parallel positioner driven by dual piezoelectric actuators[J]. Sensors and Actuators A:Physical, 2007, 135(1): 250-256. doi: 10.1016/j.sna.2006.07.011
    [20] HERPE X, WALKER R, DUNNIGAN M, et al. On a simplified nonlinear analytical model for the characterisation and design optimisation of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 66-76. doi: 10.1016/j.rcim.2017.05.012
    [21] 李海洋, 郝广波, 于靖军, 等. 空间平动柔性并联机构的系统设计方法研究[J]. 机械工程学报, 2018, 54(13): 57-65. doi: 10.3901/JME.2018.13.057

    LI H Y, HAO G B, YU J J. et al. Systematic approach to the design of spatial translational compliant parallel mechanisms[J]. Journal of Mechanical Engineering, 2018, 54(13): 57-65(in Chinese). doi: 10.3901/JME.2018.13.057
    [22] HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) Part I: Principles[J]. Precision Engineering, 2010, 34(2): 259-270.
    [23] HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and constraint topology (FACT) Part II: Principles[J]. Precision Engineering, 2010, 34(2): 271-278.
    [24] 黄真, 刘婧芳, 曾达幸. 基于约束螺旋理论的机构自由度分析的普遍方法[J]. 中国科学, 2009, 39(1): 84-93.

    HUANG Z, LIU J F, ZENG D X. A general methodology for mobility analysis of mechanism based on the constraint screw theory[J]. Science in China, 2009, 39(1): 84-93 (in Chinese).
    [25] MURANAKA Y, INABA M, ASANO T, et al. Parasitic rotation in parallel spring movements[J]. International Journal of The Japan Society for Precision Engineering, 1991, 25(3): 208-213.
    [26] KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2000 : 786-792.
    [27] 王保兴, 孟刚, 林苗, 等. 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46(4): 798-807.

    WANG B X, MENG G, LIN M, et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 798-807(in Chinese).
    [28] TANG H, LI Y M. Design analysis and test of a novel 2-DOF nanopositioning system driven by dual mode[J]. IEEE Transactions on Robotics, 2013, 29(3): 650-662. doi: 10.1109/TRO.2013.2248536
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  79
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-08-30
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答