留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轴发动机时延鲁棒串级PI控制器设计

陈义峰 郭迎清 毛皓天

陈义峰,郭迎清,毛皓天. 涡轴发动机时延鲁棒串级PI控制器设计[J]. 北京航空航天大学学报,2023,49(3):597-605 doi: 10.13700/j.bh.1001-5965.2021.0273
引用本文: 陈义峰,郭迎清,毛皓天. 涡轴发动机时延鲁棒串级PI控制器设计[J]. 北京航空航天大学学报,2023,49(3):597-605 doi: 10.13700/j.bh.1001-5965.2021.0273
CHEN Y F,GUO Y Q,MAO H T. Design of time-delay robust cascade PI controller for turboshaft engine[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):597-605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0273
Citation: CHEN Y F,GUO Y Q,MAO H T. Design of time-delay robust cascade PI controller for turboshaft engine[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):597-605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0273

涡轴发动机时延鲁棒串级PI控制器设计

doi: 10.13700/j.bh.1001-5965.2021.0273
基金项目: 国家科技重大专项(2017-Ⅴ-0015-0067)
详细信息
    通讯作者:

    E-mail:yqguo@nwpu.edu.cn

  • 中图分类号: V233.7

Design of time-delay robust cascade PI controller for turboshaft engine

Funds: National Science and Technology Major Project (2017-Ⅴ-0015-0067)
More Information
  • 摘要:

    针对涡轴发动机分布式控制系统中存在时延导致系统性能退化的问题,利用线性矩阵不等式(LMI)方法设计了时延鲁棒串级PI控制器。先利用内模控制(IMC)方法得到涡轴发动机串级控制器内、外环的PI控制器结构;再利用频域回路成形的方法给出保证系统具有期望性能的LMI形式约束条件;利用梯度近似的方法通过劳斯-赫尔维茨判据得到保证系统稳定的控制器参数约束条件;最后,在基于TrueTime的涡轴发动机分布式非线性仿真平台上进行数字仿真。仿真结果表明:在0.04 s时延条件下,当功率需求下降5%时,系统的调节时间小于5 s,功率涡轮转速超调不超过0.5%,且其最大燃油变化率只有传统串级PI控制系统的67%;设计的控制器能有效应对涡轴发动机分布式控制系统中存在的时延问题,同时能够以更小的代价保证系统具有期望的性能。

     

  • 图 1  涡轴发动机串级控制系统原理[2]

    Figure 1.  Block of cascade control system of turboshaft engine[2]

    图 2  涡轴发动机分布式控制系统第ⅢNCCS结构示意图

    Figure 2.  Type Ⅲ NCCS configuration of distributed control system of turboshaft engine

    图 3  IMC 控制系统结构示意图

    Figure 3.  IMC control system

    图 4  由4条切线构成的凸可行域

    Figure 4.  Feasible convex region divided by four tangents

    图 5  内环开环系统的Bode图

    Figure 5.  Bode plot of inner open loop

    图 6  外环开环系统的Bode图

    Figure 6.  Bode plot of outer open loop

    图 7  基于TrueTime的涡轴发动机分布式控制系统仿真平台

    Figure 7.  Simulation platform of TrueTime based distributed control system of turboshaft engine

    图 8  外环穿越频率为3 rad/s,不同时延时2个控制器作用下系统的性能比较

    Figure 8.  Comparison of control performance of two controllers with different time delays when crossing freqency of outer loop is 3 rad/s

    图 9  外环穿越频率为1 rad/s,不同时延时2个控制器作用下系统的性能比较

    Figure 9.  Comparison of control performance of two controllers with different time delays when crossing freqency of outer loop is 1 rad/s

    图 10  在固定时延与随机时延下系统性能对比

    Figure 10.  Performance comparison with constant and random time delays

  • [1] DELOSREYES G, GOUCHOE D R. The design of a turboshaft speed governor using modern control techniques: 19880000957[R]. Cleveland: NASA Lewis Research Center, 1986: 40-50.
    [2] BELAPURKAR R K, YEDAVALLI R K. LQR control design of discrete-time networked cascade control systems with time delay[C]//Proceedings of the ASME 2011 Dynamic Systems and Control Conference. New York: ASME Press, 2011: 299-304.
    [3] LIU X F, LUO C S. Stability analysis for GE T700 turboshaft distributed engine control systems[J]. IEEE Access, 2017, 5: 22485-22491. doi: 10.1109/ACCESS.2017.2762081
    [4] CULLEY D E, PALUSZEWSKI P J, STOREY W, et al. The case for distributed engine control in turboshaft engine systems [C]//65th Annual Forum and Technology Display. Reston: AIAA, 2009, 2: 1732-1745.
    [5] CULLEY D, THOMAS R, SAUS J. Concepts for distributed engine control[C]//43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007, 7: 6910-6920.
    [6] PAKMEHR M, CHAKRAVARTHY MURALIDHAR R S, SUTTER L F, et al. Developing concepts for optimal scheduling in distributed turbine engine control systems[C]//AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019: 1-10.
    [7] HUANG C Z, BAI Y, LI X L. Fundamental issues in networked cascade control systems[C]// Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: IEEE Press, 2008: 3014-3018.
    [8] HUANG C Z, BAI Y, QIU Z C. PID tuning of networked cascade control system based on desired closed-loop system responses[J]. Control & Instruments in Chemical Industry, 2010, 37(3): 19-24.
    [9] HUANG C Z, BAI Y, LIU X J. H-infinity state feedback control for a class of networked cascade control systems with uncertain delay[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 62-72. doi: 10.1109/TII.2009.2033589
    [10] AZAR A T, SERRANO F E. Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications[J]. Neural Computing and Applications, 2014, 25(5): 983-995. doi: 10.1007/s00521-014-1560-x
    [11] ALFARO V M, VILANOVA R, ARRIETA O. Robust tuning of Two-Degree-of-Freedom (2-DoF) PI/PID based cascade control systems[J]. Journal of Process Control, 2009, 19(10): 1658-1670. doi: 10.1016/j.jprocont.2009.08.006
    [12] CHEN Y F, GUO Y Q, LI R C. State feedback control for partially distributed turboshaft engine with time delay and packet dropouts [C]//Proceedings of the 37th Chinese Control Conference. Piscataway: IEEE Press, 2018: 9854-9859.
    [13] LIU X F, SUN X. H networked cascade control system design for turboshaft engines with random packet dropouts[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-12.
    [14] 陈义峰, 郭迎清, 李睿超, 等. 涡轴发动机分布式控制系统架构设计[J]. 航空计算技术, 2019, 49(5): 21-26.

    CHEN Y F, GUO Y Q, LI R C, et al. Design of turboshaft engine distributed control system architecture[J]. Aeronautical Computing Technique, 2019, 49(5): 21-26(in Chinese).
    [15] WANG Q G, HANG C C, YANG X P. Single-loop controller design via IMC principles[J]. Automatica, 2001, 37(12): 2041-2048. doi: 10.1016/S0005-1098(01)00170-4
    [16] 潘笑, 钟祎勍. 基于IMC的PID控制器的设计实现[J]. 计算机仿真, 2005, 22(8): 80-82.

    PAN X, ZHONG Y Q. Design and realization of PID control based on IMC [J]. Computer Simulation, 2005, 22(8): 80-82(in Chinese).
    [17] MAO H T, GUO Y Q, LI R C, et al. Versatile simulation platform for turboshaft engine control system[C]//Proceedings of the 38th Chinese Control Conference. Piscataway: IEEE Press, 2019: 7211-7216.
    [18] NAJAFIZADEGAN H, MERRIKH-BAYAT F, JALILVAND A. IMC-PID controller design based on loop shaping via LMI approach[J]. Chemical Engineering Research and Design, 2017, 124: 170-180. doi: 10.1016/j.cherd.2017.06.007
    [19] 王海泉. 航空发动机H鲁棒控制器设计及仿真验证[D]. 西安: 西北工业大学, 2009: 11-14.

    WANG H Q, H robust controller design for aero-engine and simulation[D]. Xi’an: Northwestern Polytechnical University, 2009: 11-14(in Chinese).
    [20] DAMEN A, WWEILAND S. Robust control[M]. Eindhoven: Eindhoven University of Technology Press, 2002: 61-68.
    [21] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 淸华大学出版社, 2002: 8-10.

    YU L. Robust control: Linear matrix inequalities processing method[M]. Beijing: Tsinghua University Press, 2002: 8-10(in Chinese).
    [22] LOFBERG J. YALMIP: A toolbox for modeling and optimization in MATLAB[C]//2014 IEEE International Conference on Robitcs and Automation. Piscataway : IEEE Press, 2005: 284-289.
    [23] BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine: 19880016994[R]. Moffett Field: NASA AMES Research Center, 1988: 1-2.
    [24] CERVIN A, HENRIKSSON D, LINCOLN B, et al. How does control timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime[J]. IEEE Control Systems, 2003, 23(3): 16-30. doi: 10.1109/MCS.2003.1200240
    [25] 杨征山, 李胜泉, 章霖官. 涡轴发动机动力涡轮转速控制回路方案研究[J]. 航空发动机, 2005, 31(2): 46-50.

    YANG Z S, LI S Q, ZHANG L G. Speed control loop schemes for power turbines of turboshaft engine[J]. Aeroengine, 2005, 31(2): 46-50(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  83
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-09-13
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答