留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意机制的轻量化稠密连接网络单幅图像去雨

柴国强 王大为 芦宾 李竹

柴国强, 王大为, 芦宾, 等 . 基于注意机制的轻量化稠密连接网络单幅图像去雨[J]. 北京航空航天大学学报, 2022, 48(11): 2186-2192. doi: 10.13700/j.bh.1001-5965.2021.0294
引用本文: 柴国强, 王大为, 芦宾, 等 . 基于注意机制的轻量化稠密连接网络单幅图像去雨[J]. 北京航空航天大学学报, 2022, 48(11): 2186-2192. doi: 10.13700/j.bh.1001-5965.2021.0294
CHAI Guoqiang, WANG Dawei, LU Bin, et al. Lightweight densely connected network based on attention mechanism for single-image deraining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2186-2192. doi: 10.13700/j.bh.1001-5965.2021.0294(in Chinese)
Citation: CHAI Guoqiang, WANG Dawei, LU Bin, et al. Lightweight densely connected network based on attention mechanism for single-image deraining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2186-2192. doi: 10.13700/j.bh.1001-5965.2021.0294(in Chinese)

基于注意机制的轻量化稠密连接网络单幅图像去雨

doi: 10.13700/j.bh.1001-5965.2021.0294
基金项目: 

国家自然科学基金 62201333

国家自然科学基金 62004119

山西省基础研究计划 20210302124647

详细信息
    通讯作者:

    芦宾, E-mail: lubinsxnu@sina.cn

  • 中图分类号: TP391

Lightweight densely connected network based on attention mechanism for single-image deraining

Funds: 

National Natural Science Foundation of China 62201333

National Natural Science Foundation of China 62004119

Basic Research Program of Shanxi Province 20210302124647

More Information
  • 摘要:

    图像中附着的雨条纹对背景造成的破坏严重影响了对图像信息的分析和后续研究。为了恢复被雨条纹破坏的背景纹理特征, 提出一种基于注意机制的轻量化稠密连接网络针对单幅图像进行去雨。注意机制有利于网络准确定位降雨区域, 稠密连接网络的使用增强了特征的复用, 缓解了梯度消失和模型退化问题。利用多尺度通道混洗深度可分离卷积实现网络轻量化设计, 降低了网络参数规模, 提升了网络运行效率。在合成数据集和真实数据集上的去雨结果表明, 所提算法在定量指标和定性分析上都优于现有算法。

     

  • 图 1  基于注意机制的改进稠密连接去雨网络结构

    Figure 1.  Structure of modified densely connected rain removal network based on attention mechanism

    图 2  多尺度聚集自适应雨条纹检测模块结构

    Figure 2.  Structure of multi-scale aggregation self-adapting rain streaks detection module

    图 3  注意图可视化

    Figure 3.  Visualization of attention map

    图 4  稠密连接网络

    Figure 4.  Densely connected network

    图 5  多尺度通道混洗的深度可分离卷积

    Figure 5.  Depthwise separable convolution with multi-scale channel shuffle

    图 6  不同算法合成数据集去雨结果可视化对比

    Figure 6.  Visualized comparison of different rain removal agorithms on synthetic dataset

    图 7  不同算法真实数据集去雨结果可视化对比

    Figure 7.  Visualized comparison of different rain removal algorithms on real dataset

    表  1  不同去雨算法PSNR和SSIM对比

    Table  1.   PSNR and SSIM comparison of different rain removal algorithms

    数据集 算法 PSNR SSIM
    Rain100H GMM 14.262 0.544
    DSC 15.661 0.423
    RESCAN 26.451 0.846
    ReHEN 27.972 0.864
    SPANet 26.762 0.836
    UMRL 26.840 0.854
    本文 29.362 0.898
    Rain100L GMM 29.111 0.880
    DSC 24.162 0.870
    RESCAN 35.672 0.967
    ReHEN 37.412 0.980
    SPANet 35.473 0.967
    UMRL 32.305 0.966
    本文 37.524 0.985
    Rain800 GMM 20.462 0.730
    DSC 18.561 0.599
    RESCAN 24.091 0.841
    ReHEN 26.961 0.854
    SPANet 25.960 0.866
    UMRL 25.155 0.879
    本文 27.155 0.884
    下载: 导出CSV

    表  2  不同方法参数量与测试时间对比

    Table  2.   Comparison of parameters number and average running time

    算法 参数量/106 测试时间/s
    GMM 423.511
    DSC 146.761
    RESCAN 0.298 0.443
    ReHEN 0.150 0.522
    SPANet 0.219 0.145
    UMRL 0.984 0.162
    本文 0.112 0.122
    下载: 导出CSV

    表  3  阶段数量对去雨效果的影响

    Table  3.   Effect of stage number on rain removal

    阶段数量 PSNR SSIM
    1 26.156 0.756
    2 27.256 0.812
    3 28.116 0.866
    4 28.596 0.878
    5 28.702 0.895
    6 29.362 0.898
    7 29.362 0.899
    下载: 导出CSV
  • [1] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]//European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 385-400.
    [2] SALEH F, ALIAKBARIAN M, SALZMANN M, et al. Effective use of synthetic data for urban scene semantic segmentation[C]//European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 86-103.
    [3] VO B N, VO B T, PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567. doi: 10.1109/TSP.2014.2364014
    [4] LI Y, TAN R T, GUO X, et al. Rain streak removal using layer priors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2016: 2736-2744.
    [5] KIM J, LEE C, SIM J, et al. Single-image deraining using an adaptive nonlocal means filter[C]//IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2013: 914-917.
    [6] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 3397-3405.
    [7] WANG Y, LIU S, CHEN C, et al. A hierarchical approach for rain or snow removing in a single color image[J]. IEEE Transactions on Image Processing, 2017, 26(8): 3936-3950. doi: 10.1109/TIP.2017.2708502
    [8] YANG W, TAN R, FENG J, et al. Joint rain detection and removal from a single image with contextualized deep networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(6): 1377-1393. doi: 10.1109/TPAMI.2019.2895793
    [9] WANG T Y, YANG X, XU K, et al. Spatial attentive single-image deraining with a high quality real rain dataset[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 12262-12271.
    [10] REN D, ZUO W, HU Q, et al. Progressive image deraining networks: A better and simpler baseline[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 3932-3941.
    [11] ZHANG D, HE J, ZHAO Y. Learning to perform joint image super-resolution and rain removal via a single-convolutional neural network[J]. Journal of Electronic Imaging, 2018, 27(6): 063024.1-063024.11.
    [12] XIA H, ZHUGE R, LI H, et al. Single image rain removal via a simplified residual dense network[J]. IEEE Access, 2018, 6: 66522-66535. doi: 10.1109/ACCESS.2018.2879330
    [13] 王聪. 图像去雨的深度模型[D]. 大连: 大连理工大学, 2020: 5-8.

    WANG C. Deep models for single image deraining[D]. Dalian: Dalian University of Technology, 2020: 5-8(in Chinese).
    [14] WANG C, XING X, WU Y, et al. DCSFN: Deep cross-scale fusion network for single image rain removal[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1643-1651.
    [15] WANG C, WU Y, SU Z, et al. Joint self-attention and scale-aggregation for self-calibrated deraining network[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2517-2525.
    [16] HUANG G, LIU Z, MAATEN L, et al. Densely connected con-volutional networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 2261-2269.
    [17] CHAI G Q, WANG Z B, GUO G D, et al. Recursive modified dense network for single image deraining[J]. Journal of Electronic Imaging, 2020, 29(3): 33006.
    [18] LIU R, JIANG D, ZHANG L, et al. Deep depthwise separable convolutional network for change detection in optical aerial images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1109-1118. doi: 10.1109/JSTARS.2020.2974276
    [19] 庞帆. 激光雷达惯导耦合的里程计与建图方法研究[D]. 北京: 北京建筑大学, 2020: 2-6.

    PANG F. Odometer and mapping method of lidar inertial navigation coupling[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020: 2-6(in Chinese).
    [20] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2018: 6848-6856.
    [21] HUANG H, HE R, SUN Z, et al. Wavelet-SRNet: A wavelet-based CNN for multi-scale face super resolution[C]//International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 1698-1706.
    [22] JOHNSON J, ALAHI A, LI F. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2016: 694-711.
    [23] YANG C, MA C, YANG M. Single-image super-resolution: A benchmark[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2014: 372-386.
    [24] ZHANG H, SINDAGI V, PATEL V. Image deraining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943-3956. doi: 10.1109/TCSVT.2019.2920407
    [25] YANG W, TAN R, FENG J, et al. Deep joint rain detection and removal from a singled image[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2017: 1685-1694.
    [26] LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//European Conference on Computer Vision(ECCV). Berlin: Springer, 2018: 262-277.
    [27] YANG Y, LU H. Single image deraining via recurrent hierarchy enhancement network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1814-1822.
    [28] YASARLA R, PATEL V M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image deraining[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2019: 8397-8406.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  113
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答