留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性涡流阵列传感器孔边裂纹监测技术

樊祥洪 缑百勇 陈涛 何宇廷 崔荣洪 喻健

樊祥洪,缑百勇,陈涛,等. 柔性涡流阵列传感器孔边裂纹监测技术[J]. 北京航空航天大学学报,2023,49(3):726-734 doi: 10.13700/j.bh.1001-5965.2021.0306
引用本文: 樊祥洪,缑百勇,陈涛,等. 柔性涡流阵列传感器孔边裂纹监测技术[J]. 北京航空航天大学学报,2023,49(3):726-734 doi: 10.13700/j.bh.1001-5965.2021.0306
FAN X H,GOU B Y,CHEN T,et al. Hole edge crack monitoring technology of flexible eddy current array sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):726-734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0306
Citation: FAN X H,GOU B Y,CHEN T,et al. Hole edge crack monitoring technology of flexible eddy current array sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):726-734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0306

柔性涡流阵列传感器孔边裂纹监测技术

doi: 10.13700/j.bh.1001-5965.2021.0306
基金项目: 国家杰出青年科学基金(52007197)
详细信息
    通讯作者:

    E-mail:goubaiyong789@126.com

  • 中图分类号: V215.6;TP212.1

Hole edge crack monitoring technology of flexible eddy current array sensor

Funds: National Science Foundation for Distinguished Young Scholars (52007197)
More Information
  • 摘要:

    针对这一问题,提出了一种带双面补强的柔性涡流阵列传感器并用于孔边裂纹监测。通过COMSOL有限元软件建立传感器和被测试验件的有限元模型,分析提离距离、垫片磁导率变化和裂纹扩展对传感器输出信号的影响;制备带补强和不带补强的传感器,并开展挤压实验和在线疲劳裂纹监测实验;根据实验结果和仿真结果之间的差异进行误差分析。结果显示:随着提离距离和垫片磁导率的增加,传感器输出感应电压逐渐增大;传感器裂纹监测灵敏度随着提离距离的增加而逐渐减小;带补强的传感器可以在螺栓拧紧扭矩为63 N·m的条件下工作,而不带补强的传感器在拧紧力矩为50 N·m时完全失效;通过在线疲劳裂纹监测实验验证了带补强的传感器对裂纹具有定量监测能力,裂纹监测精度与激励线圈之间的间距一致,可达1 mm;实验结果与仿真结果之间的差异主要由提离距离引入。

     

  • 图 1  柔性涡流阵列传感器示意图

    Figure 1.  Schematic diagram of flexible eddy current array sensor

    图 2  带双面补强的柔性涡流阵列传感器

    Figure 2.  Flexible eddy current array sensor with double-sided reinforcement

    图 3  带参考通道的柔性涡流阵列传感器

    Figure 3.  Flexible eddy current array sensor with reference channel

    图 4  裂纹扩展示意图

    Figure 4.  Schematic diagram of crack propagation

    图 5  传感器仿真模型

    Figure 5.  Sensor simulation model

    图 6  试验件剖面涡流分布图

    Figure 6.  Eddy-current profile of test piece

    图 7  感应电压随提离距离变化趋势

    Figure 7.  Trend of induced voltage with lift-off

    图 8  感应电压随相对磁导率的变化趋势

    Figure 8.  Trend of induced voltage with relative permeability

    图 9  传感器三维仿真模型

    Figure 9.  Sensor simulation model

    图 10  裂纹识别灵敏度变化趋势图

    Figure 10.  Variation trend of crack identification sensitivity

    图 11  裂纹扩展对涡流的扰动作用

    Figure 11.  Effects of crack growth on eddy currents

    图 12  传感器挤压实验

    Figure 12.  Sensor extrusion experiment

    图 13  疲劳裂纹在线监测系统

    Figure 13.  On-line fatigue crack monitoring system

    图 14  在线疲劳裂纹监测实验现场

    Figure 14.  Experiment site of online crack monitoring

    图 15  裂纹监测结果

    Figure 15.  Crack monitoring results

    图 16  通过参考通道修正的裂纹监测结果

    Figure 16.  Crack monitoring results modified by reference channel

    图 17  激励线圈下方区域划分

    Figure 17.  Division of area below excitation coil

    图 18  不同区域涡流大小随提离距离变化趋势

    Figure 18.  Variation trend of eddy current size with lifting distance in different areas with lift-off

    图 19  不同提离距离下裂纹识别灵敏度

    Figure 19.  Sensitivity of crack monitoring at different lift-off

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数数值
    f激励频率/MHz1
    σAL2024铝合金电导率/(S·m−11.74×107
    μAL2024铝合金相对磁导率1
    σb螺栓、垫片、螺母电导率/(S·m−18.41×106
    μr螺栓、垫片、螺母相对磁导率2 000
    HAL被测金属件厚度/mm2
    CC激励线圈、感应线圈宽度/mm0.1
    CT激励线圈、感应线圈厚度/mm0.03
    JT柔性基底厚度/mm0.03
    BT补强片厚度/mm0.1
    DC激励线圈与感应线圈之间的间距/mm0.2
    R圆孔半径/mm6
    R1,R2,R3,R4激励线圈1、2、3、4半径/mm7、8、9、10
    lift-off提离距离/mm0.1
    下载: 导出CSV

    表  2  挤压实验结果

    Table  2.   Results of extrusion experiment

    拧紧扭矩/(N·m)带补强的传感器不带补强的传感器
    20正常工作正常工作
    25正常工作正常工作
    30正常工作感应通道5坏
    35正常工作感应通道3、4坏
    40正常工作感应通道2坏
    45正常工作感应通道6坏
    50正常工作感应通道1、7坏
    55正常工作
    60正常工作
    63正常工作
    下载: 导出CSV
  • [1] CHEN T, HE Y T, DU J Q. A high-sensitivity flexible eddy current array sensor for crack monitoring of welded structures under varying environment[J]. Sensors, 2018, 18(6): 1780. doi: 10.3390/s18061780
    [2] CHEN T, DU J Q, HE Y T. A structural crack monitoring gasket for aircraft bolt-jointed structures with temperature compensation[J]. Smart Materials and Structures, 2018, 27(11): 115004.
    [3] LIU M B, LI B B, LI J T, et al. Smart coating sensor applied in crack detection for aircraft[J]. Applied Mechanics and Materials, 2013, 330: 383-388.
    [4] ROACH D. Real time crack detection using mountable comparative vacuum monitoring sensors[J]. Smart Structures and Systems, 2009, 5(4): 317-328.
    [5] MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fibre bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators A: Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008
    [6] HUNT S R, HEBDEN I G. Validation of the eurofighter typhoon structural health and usage monitoring system[J]. Smart Materials and Structures, 2001, 10(3): 497.
    [7] WILLBERG C, DUCZEK S, PEREZ J M V, et al. Comparison of different higher order finite element schemes for the simulation of Lamb waves[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 241-244: 246-261.
    [8] YAMAGUCHI T, UEDA M. An active sensor for monitoring bearing wear by means of an eddy current displacement sensor[J]. Measurement Science and Technology, 2006, 18(1): 311-317.
    [9] 刘凯, 崔荣洪, 侯波, 等. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 40(9): 160-166. doi: 10.11868/j.issn.1001-4381.2018.000781

    LIU K, CUI R H, HOU B, et al. Estimation and analysis of probability of PVD film sensor for crack detection[J]. Journal of Materials Engineering, 2019, 40(9): 160-166(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000781
    [10] GOLDFINE N J, WASHABAUGH A P, DEARLOVE J V, et al. Imposed ω-k magnetometer and dielectrometer applications[M]. Berlin: Springer, 1993.
    [11] SCHLICKER D E. Imaging of absolute electrical properties using electroquasistatic and magnetoquasistatic sensor arrays[D]. Cambridge: Massachusetts Institute of Technology, 2006.
    [12] RAKOW A, CHANG F K. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints[J]. Structural Health Monitoring, 2012, 11(3): 253-267. doi: 10.1177/1475921711429497
    [13] 丁华, 焦胜博, 何宇廷, 等. 花萼状涡流阵列传感器裂纹扰动半解析模型构建[J]. 中国电机工程学报, 2014, 34(3): 495-502. doi: 10.13334/j.0258-8013.pcsee.2014.03.022

    DING H, JIAO S B, HE Y T, et al. Semi-analytical crack perturbation model construction of rosette eddy current sensors[J]. Proceedings of the CSEE, 2014, 34(3): 495-502(in Chinese). doi: 10.13334/j.0258-8013.pcsee.2014.03.022
    [14] 李培源, 何宇廷, 杜金强, 等. 基于柔性涡流传感器疲劳裂纹监测试验研究[J]. 传感器与微系统, 2015, 34(1): 24-31.

    LI P Y, HE Y T, DU J Q, et al. Research on fatigue crack monitoring experimental based on flexible eddy current sensor[J]. Transducer and Microsystem Technologies, 2015, 34(1): 24-31(in Chinese).
    [15] 杜金强, 何宇廷, 李培源. 矩形柔性涡流阵列传感器裂纹检测研究[J]. 传感器与微系统, 2014, 33(5): 12-17. doi: 10.3969/j.issn.1000-9787.2014.05.004

    DU J Q, HE Y T, LI P Y. Research on crack inspecting of rectangular flexible eddy current array sensor[J]. Transducer and Microsystem Technologies, 2014, 33(5): 12-17(in Chinese). doi: 10.3969/j.issn.1000-9787.2014.05.004
    [16] FAN X H, CHEN T, HE Y T, et al. An excitation coil layout method for improving the sensitivity of a rosette flexible eddy current array sensor[J]. Smart Materials and Structures, 2020, 29(1): 015020.
    [17] FAN X H, CHEN T, DU J Q, et al. Methods for improving sensitivity of crack quantitative monitoring of flexible eddy current array sensor[J]. Smart Materials and Structures, 2020, 29(8): 085033.
    [18] 《航空制造工程手册》总编委会. 航空制造工程手册: 飞机装配[M]. 2版. 北京: 航空工业出版社, 2010: 391-392.

    Aeronautical manufacturing engineering handbook editorial board. Aeronautical manufacturing engineering manual: Aircraft assembly[M]. 2nd ed. Beijing: Aviation Industry Press, 2010: 391-392(in Chinese).
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  100
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 录用日期:  2021-09-26
  • 网络出版日期:  2021-11-01
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答