留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直反信号协同的GNSS-R BSAR距离多普勒成像算法

吴世玉 杨东凯 王峰 苗铎

吴世玉,杨东凯,王峰,等. 直反信号协同的GNSS-R BSAR距离多普勒成像算法[J]. 北京航空航天大学学报,2023,49(3):588-596 doi: 10.13700/j.bh.1001-5965.2021.0310
引用本文: 吴世玉,杨东凯,王峰,等. 直反信号协同的GNSS-R BSAR距离多普勒成像算法[J]. 北京航空航天大学学报,2023,49(3):588-596 doi: 10.13700/j.bh.1001-5965.2021.0310
WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0310
Citation: WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0310

直反信号协同的GNSS-R BSAR距离多普勒成像算法

doi: 10.13700/j.bh.1001-5965.2021.0310
基金项目: 国家自然科学基金(41774028); 中国博士后科学基金(BX20200039)
详细信息
    通讯作者:

    E-mail:wangfeng_buaa@buaa.edu.cn

  • 中图分类号: V19;TN958.97

GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal

Funds: National Natural Science Foundation of China (41774028); China Postdoctoral Science Foundation (BX20200039)
More Information
  • 摘要:

    针对目前基于全球导航卫星系统反射信号的双基地合成孔径雷达(GNSS-R BSAR)在一站固定模式下的大斜视,斜距历程复杂,回波信号方位空变导致回波信号难以处理的问题,提出改进的距离多普勒成像新算法。所提算法采用GNSS信号作为辐射源,根据一站固定模式下GNSS-R BSAR合成孔径时间长的特点,引入高阶等效斜视距离模型,得到导航卫星与目标斜距相对时间变化的精确描述。先通过直射信号与回波信号时域对消进行距离徙动校正,实现全场景目标距离徙动的精确校正;再通过方位向分块混合相关处理来克服回波信号方位向的移变性质,实现全场景高效精确成像。所提算法的成像效率优于传统后向投影时域(BP)算法,成像精度与BP算法相当,且可根据需要通过调整方位分块的宽度来提升聚焦效果。最后,用GPS-L5 信号进行仿真和实验,仿真和实验结果验证了所提算法的可行性和高效性。

     

  • 图 1  等效斜视模型-斜距误差仿真

    Figure 1.  Equivalent squint range model-slope range error simulation

    图 2  高阶等效斜视距离模型-斜距误差仿真

    Figure 2.  Improved equivalent squint range model-slope range error simulation

    图 3  GNSS-R BSAR一站固定模式的几何构型

    Figure 3.  GNSS-R BSAR one station fixed pattern geometric configuration

    图 4  所提算法流程

    Figure 4.  Flowchart of the proposed algorithm

    图 5  残差与斜距及合成孔径时间的关系

    Figure 5.  Relationship between residual error and slant range and synthetic aperture time

    图 6  场景点目标分布

    Figure 6.  Scene point target distribution map

    图 7  所提算法的成像结果

    Figure 7.  The proposed algorithm imaging results

    图 8  13号与25号点目标仿真横截面分析

    Figure 8.  Cross-section analysis of target simulation at No. 13 and No. 25

    图 9  GNSS-R BSAR数据采集系统

    Figure 9.  GNSS-R BSAR data collection system

    图 10  北京航空航天大学体育场周边的光学图像(谷歌地图)

    Figure 10.  Optical image around Beihang University stadium (Google map)

    图 11  BP算法成像结果

    Figure 11.  BP algorithm imaging results

    图 12  所提算法成像结果

    Figure 12.  The proposed algorithm imaging results

    图 13  所提算法成像结果光学匹配图

    Figure 13.  The proposed algorithm imaging result optical matching map

    图 14  成像结果交叉横截面的分析-距离向剖面

    Figure 14.  Analysis of cross-section of imaging results-range profile

    图 15  成像结果交叉横截面的分析-方位向剖面

    Figure 15.  Analysis of cross-section for imaging results-azimuth profile

    表  1  残差项仿真参数

    Table  1.   Residual simulation parameters

    坐标卫星位置/km卫星速度/(m·s−1)接收机位置/m目标点/m
    x11769500.9601~5000
    y1124.82891.800
    z12482−369.2410000
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数距离向
    采样频率/
    MHz
    载波
    频率/
    MHz
    信号
    带宽/
    MHz
    成像区域
    大小/
    (km×km)
    合成
    孔径
    时间/s
    脉冲
    重复
    频率/Hz
    数值621176.4520.466.5×6.53001000
    下载: 导出CSV

    表  3  场景参数

    Table  3.   Scene parameters

    坐标接收机位置/
    m
    场景中心位置/
    km
    卫星位置/
    km
    卫星速度/
    (m·s−1)
    x012.520133.72581392.7068
    y0010697.3032−2766.6856
    z1000728.0291138.3063
    下载: 导出CSV

    表  4  所选点目标的评估参数

    Table  4.   Evaluation parameters of selected point target

    参数距离向方位向
    PSLR/dBISLR/dB分辨率/mPSLR/dBISLR/dB分辨率/m
    目标13−34.8−12.816.8 −13.3−9.945.625
    目标25−34.8−12.616.8−13.11−9.765.626
    理论值−35−12.816.3−13.3−9.955.625
    下载: 导出CSV

    表  5  实验场景主要回波目标

    Table  5.   Main echo target of experimental scene

    编号建筑物
    目标0链球围栏
    目标1角反射器
    目标2两道铁栅栏
    目标3篮球场铁栅栏
    目标4篮球场铁栅栏
    目标5游泳馆
    目标6体育馆
    目标7体育馆顶部
    目标8新主楼
    下载: 导出CSV

    表  6  数据采集系统及成像参数

    Table  6.   Data acquisition system and imaging parameters

    参数数值
    采样频率/MHz62
    量化比特/bit14
    载频/MHz1176.45
    信号带宽/MHz20.46
    合成孔径时间/s1800
    成像区域大小/(m×m)600×600
    脉冲重复频率/Hz1000
    回波天线海拔高度/m60.52
    下载: 导出CSV

    表  7  GPS PRN03卫星的位置和速度信息

    Table  7.   GPS PRN03 satellite position and speed information

    坐标卫星位置/km速度/(m·s−1)
    x20133.72581392.7068
    y10697.3032−2766.6856
    z728.0291138.3063
    下载: 导出CSV
  • [1] ANTONIOU M, CHERNIAKOV M. GNSS-based bistatic SAR: A signal processing view[J]. EURASIP Journal on Advances in Signal Processing, 2013(1): 1-16.
    [2] ANTONIOU M, STOVE A, SAYIN A, et al. Passive SAR satellite constellation for near-persistent earth observation: Prospects and issues[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33: 4-15. doi: 10.1109/MAES.2018.8650001
    [3] WANG F, YANG D, YANG L. Feasibility of wind direction observation using low-altitude global navigation satellite system-reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5063-5075. doi: 10.1109/JSTARS.2018.2877388
    [4] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry[J]. ESA Journal, 1993, 17: 331-355.
    [5] RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al. Soil moisture retrieval ssing GNSS-R techniques: Experimental results over a bare soil field[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3616-3624. doi: 10.1109/TGRS.2009.2030672
    [6] 洪学宝, 张波, 阮宏梁, 等. 基于相关功率修正的地基GNSS-R土壤湿度反演[J]. 北京航空航天大学学报, 2021, 47(8): 1558-1564. doi: 10.13700/j.bh.1001-5965.2020.0154

    HONG X B, ZHANG B, RUAN H L, et al. Ground-based GNSS-R soil moisture retrieval based on correlation power correction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1558-1564(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0154
    [7] ZHOU X, WANG P, CHEN J, et al. A modified radon fourier transform for GNSS-based bistatic radar target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020(99): 1-5.
    [8] GAO C, YANG D, HONG X, et al. Experimental results about traffic flow detection by using GPS reflected signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5076-5087. doi: 10.1109/JSTARS.2018.2882232
    [9] LIU F, FAN X, ZHANG T, et al. GNSS-Based SAR interferometry for 3-D deformation retrieval: Algorithms and feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5736-5748.
    [10] LIU F, ANTONIOU M, ZENG Z, et al. Coherent change detection using passive GNSS-Based BSAR: Experimental proof of concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4544-4555.
    [11] 仇晓兰, 丁赤飚, 胡东辉. 双站SAR成像处理技术[M]. 北京: 科学技术出版社, 2010: 147-148.

    QIU X L, DING C B, HU D H. Double-station SAR imaging processing technology[M]. Beijing: Science and Technology Press, 2010: 147-148 (in chinese ) .
    [12] SHAO Y F, WANG R, DENG Y K, et al. Fast backprojection algorithm for bistatic SAR imaging[J]. IEEE Transations on Geoscience and Remote Sensing, 2013, 10(5): 1080-1084. doi: 10.1109/LGRS.2012.2230243
    [13] ANTONIOU M, SAINI R, CHERNIAKOV M. Results of a space-surface bistatic SAR image formation algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3359-3371. doi: 10.1109/TGRS.2007.902124
    [14] ZENG T, WANG R, LI F, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108-3118. doi: 10.1109/TGRS.2012.2219057
    [15] ZHOU X K, CHEN J, WANG P B, et al. An efficient imaging algorithm for GNSS-R bi-static SAR[J]. Remote Sensing, 2019, 11(24): 2945. doi: 10.3390/rs11242945
    [16] WANG P, LIU W, CHEN J, et al. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225-1235. doi: 10.1109/TGRS.2014.2336241
    [17] 黄岩, 李春升, 陈杰, 等. 高分辨星载SAR改进ChirpScaling成像算法[J]. 电子学报, 2000, 28(3): 35-38. doi: 10.3321/j.issn:0372-2112.2000.03.010

    HUANG Y, LI C S, CHEN J, et al. Improved ChirpScaling imaging algorithm for high resolution spaceborne SAR[J]. Acta Electronics, 2000, 28(3): 35-38(in Chinese). doi: 10.3321/j.issn:0372-2112.2000.03.010
    [18] ZENG H C, WANG P B, CHEN J, et al. A novel general imaging formation algorithm for GNSS-based bistatic SAR[J]. Sensors, 2016, 16(3): s16030294.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  79
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 录用日期:  2021-06-21
  • 网络出版日期:  2021-08-03
  • 整期出版日期:  2023-03-30

目录

    /

    返回文章
    返回
    常见问答