留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空电子限时令牌太赫兹互连的实时性能分析

李佳 李峭 左沅君 熊华钢

李佳,李峭,左沅君,等. 航空电子限时令牌太赫兹互连的实时性能分析[J]. 北京航空航天大学学报,2023,49(4):932-942 doi: 10.13700/j.bh.1001-5965.2021.0317
引用本文: 李佳,李峭,左沅君,等. 航空电子限时令牌太赫兹互连的实时性能分析[J]. 北京航空航天大学学报,2023,49(4):932-942 doi: 10.13700/j.bh.1001-5965.2021.0317
LI J,LI Q,ZUO Y J,et al. Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):932-942 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0317
Citation: LI J,LI Q,ZUO Y J,et al. Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):932-942 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0317

航空电子限时令牌太赫兹互连的实时性能分析

doi: 10.13700/j.bh.1001-5965.2021.0317
基金项目: 国家自然科学基金(62071023)
详细信息
    通讯作者:

    E-mail:avionics@buaa.edu.cn

  • 中图分类号: V247.1;TP393.1

Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics

Funds: National Natural Science Foundation of China (62071023)
More Information
  • 摘要:

    在航空电子设备内部采用太赫兹通信技术实现cm级的板间或芯片互连可以减少引脚和接插件,缩小电子设备的体积,并降低维护成本。针对采用全向天线收发和开关键控(OOK)调制的近距离太赫兹通信网络,通过考虑分子吸收噪声和损耗的点到点通信链路分析,给出太赫兹信道容量计算结果;结合节点间的限时令牌多路访问协议,依据信道容量采用服务曲线模型进行最坏情况下总流量分析(TFA)和隔离流量分析(SFA);充分考虑概率保证下应用层通信任务的突发度,得到限时令牌太赫兹互连的实时性能分析方法。案例研究表明:相较于时分多址(TDMA)方式,基于限时令牌协议的无冲突多路访问机制可以适应物理层容量和应用层负载的随机变化,保证了更小的延迟,有利于实现航空电子芯片间和板间的太赫兹互连组网和实时通信。

     

  • 图 1  限时令牌太赫兹互连的航空电子应用场景

    Figure 1.  Usage of Terahertz interconnections with timed token protocol in avionics scenario

    图 2  限时令牌传递协议

    Figure 2.  Timed token passing protocol

    图 3  节点消息流到达曲线αi,j

    Figure 3.  Arrival curve of node message flow αi,j

    图 4  限时令牌多路访问节点i服务曲线βi(t)

    Figure 4.  Service curve βi(t) of node i in timed token multiple access

    图 5  信道路径损耗A与频率关系

    Figure 5.  Channel path loss A vs. frequency

    图 6  分子吸收噪声功率谱密度Nmol与频率和传播距离关系

    Figure 6.  Power spectral density of molecular absorption noise Nmol vs. frequency and propagation distance

    图 7  节点5的TFA分析结果

    Figure 7.  TFA analysis results of Node5

    图 8  节点5关注流量的SFA分析结果

    Figure 8.  SFA analysis results of concerned traffic of Node5

    图 9  节点1实际令牌持有时间示意图

    Figure 9.  Diagram of actual token holding time of Node1

    图 10  ${{\boldsymbol{T}}_i}\left( {{\tau _i}} \right)$随机过程建模

    Figure 10.  Modeling of stochastic process ${{\boldsymbol{T}}_i}\left( {{\tau _i}} \right)$

    图 11  考虑有效带宽后节点5的TFA分析

    Figure 11.  TFA analysis of Node5 with consideration of effective bandwidth

    表  1  不同传播距离下的信道容量

    Table  1.   Channel capacity in different propagation distances

    参数传播距离/cm
    1510501001000
    信道容量/(Gbit·s−154.5505.8501.5770.0650.0161.6×10−4
    下载: 导出CSV

    表  2  节点消息负载状况及带宽分配

    Table  2.   Node message load and bandwidth allocation

    节点kiPi /μsCi /μsDi /μsTHTi /μs
    121202.71205.40
    241001.21205.76
    361000.81004.80
    431202.51509.38
    551202.012010.00
    641502.31209.20
    731002.71008.10
    851201.21608.00
    961601.812010.80
    10 41202.21208.80
    下载: 导出CSV

    表  3  ${{\boldsymbol{T}}_i}\left( {{\tau _i}} \right)$概率分布

    Table  3.   Probability distribution of ${{{T}}_i}\left( {{\tau _i}} \right)$

    节点THTi/μs${ {{T} }_i}\left( { {\tau _i} } \right)$/μs${\tau _i}$/μs概率P
    15.402.70~57.30.4775
    5.457.3~1200.5225
    25.761.20~23.80.238
    2.423.8~48.80.25
    3.648.8~73.80.25
    4.873.8~1000.262
    34.800.80~15.870.1587
    1.615.87~32.530.1666
    2.432.53~49.20.1667
    3.249.2~65.870.1667
    4.065.87~82.530.1666
    4.882.53~1000.1747
    下载: 导出CSV

    表  4  不同保证概率下3种方法的Beff估算结果

    Table  4.   Estimation results of Beff with three methods in different guaranteed probabilities

    保证概率 εBeff/μs
    正态置信概率估计Chernoff界估计Monte Carlo仿真
    10−256.756.656.4
    10−361.660.360.2
    10−465.462.962.9
    10−568.564.864.2
    下载: 导出CSV

    表  5  网络负载率与最大延迟

    Table  5.   Network load rate vs. maximum delay

    网络负载率U/%TDMA/μs限时令牌/μs最大延迟减小/%
    3031.2327.7511.14
    5050.4745.2510.34
    8081.2473.99.03
    下载: 导出CSV

    表  6  U=30%时的节点消息负载状况

    Table  6.   Node message load when U = 30%

    节点kiPi /μsCi /μsDi /μsTHTi /μs
    121201.01202.00
    241000.51202.40
    361000.51003.00
    431201.01503.75
    551200.751203.75
    641500.51202.00
    731001.01003.00
    851200.51603.33
    961600.51203.00
    10 41201.01204..00
    下载: 导出CSV

    表  7  U=50%时的节点消息负载状况

    Table  7.   Node message load when U = 50%

    节点kiPi /μsCi /μsDi /μsTHTi /μs
    121202.01204.00
    241001.01204.80
    361001.01006.00
    431201.01503.75
    551201.251206.25
    641502.01208.00
    731001.01003.00
    851201.01606.67
    961600.51203.00
    1041201.01204.00
    下载: 导出CSV
  • [1] The ASHLEY Steering Committee. ASHLEY—The project [EB/OL]. (2018-03-18) [2020-03-05]. http://www. ashleyproject.eu.
    [2] GU Q J. THz interconnect: The last centimeter communication[J]. IEEE Communications Magazine, 2015, 53(4): 206-215. doi: 10.1109/MCOM.2015.7081096
    [3] LEE Y S. Principles of Terahertz science and technology[M]. Berlin: Springer, 2009: 3.
    [4] CHEN Y, HAN C. Channel modeling and characterization for wireless networks-on-chip communications in the millimeter wave and Terahertz bands[J]. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2019, 5(1): 30-43. doi: 10.1109/TMBMC.2019.2952863
    [5] ELAYAN H, AMIN O, SHIHADA B, et al. Terahertz band: The last piece of RF spectrum puzzle for communication systems[J]. IEEE Open Journal of the Communications Society, 2019, 1: 1-32.
    [6] PARK J D, KANG S, THYAGARAJAN S V, et al. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication[C]//2012 Symposium on VLSI Circuits. Piscataway: IEEE Press, 2012: 48-49.
    [7] LEE S, HARA S, YOSHIDA T, et al. An 80-Gb/s 300-GHz-band single-chip CMOS transceiver[J]. IEEE Journal of Solid-State Circuits, 2019, 54(12): 3577-3588. doi: 10.1109/JSSC.2019.2944855
    [8] JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. doi: 10.1109/TWC.2011.081011.100545
    [9] KOKKONIEMI J, LEHTOMÄKI J, JUNTTI M. A discussion on molecular absorption noise in the Terahertz band[J]. Nano Communication Networks, 2016, 8: 35-45. doi: 10.1016/j.nancom.2015.11.001
    [10] GHAFOOR S, BOUJNAH N, REHMANI M H, et al. MAC protocols for Terahertz communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2236-2282.
    [11] ALSHEIKH R, AKKARI N, FADEL E. Grid based energy-aware MAC protocol for wireless nanosensor network[C]//2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). Piscataway: IEEE Press, 2016: 1-5.
    [12] LEMIC F, ABADAL S, TAVERNIER W, et al. Survey on Terahertz nanocommunication and networking: A top-down perspective[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1506-1543. doi: 10.1109/JSAC.2021.3071837
    [13] STRAITON A. The absorption and reradiation of radio waves by oxygen and water vapor in the atmosphere[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 595-597. doi: 10.1109/TAP.1975.1141104
    [14] JORNET J M, PUJOL J C, PARETA J S. PHLAME: A physical layer aware MAC protocol for electromagnetic nanonetworks[J]. Nano Communication Networks, 2012, 3(1): 74-81. doi: 10.1016/j.nancom.2012.01.006
    [15] 李峭, 李佳, 熊华钢, 等. 航空电子微距太赫兹互连DRR访问容量分析[J]. 航空学报, 2021, 42(6): 624082.

    LI Q, LI J, XIONG H G, et al. Accessing capacity of deficit round-robin (DRR) in avionics very-short range THz interconnections[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624082(in Chinese).
    [16] 中国航天工业第一集团公司. 线性令牌传递多路数据总线: GJB 8585—2015[S]. 北京: 总装备部军标出版发行部, 2016: 9-10.

    Aviation Industry Corporation of China. Linear token passing multiple data bus: GJB 8585—2015[S]. Beijing: Department of General Equipment Department of Military Standard Publishing, 2016: 9-10(in Chinese).
    [17] LE BOUDEC J Y, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001: 27-55.
    [18] PIESIEWICZ R, KLEINE-OSTMANN T, KRUMBHOLZ N, et al. Short-range ultra-broadband terahertz communications: Concepts and perspectives[J]. IEEE Antennas and Propagation Magazine, 2007, 49(6): 24-39. doi: 10.1109/MAP.2007.4455844
    [19] ZHU N, ZIOLKOWSKI R W. Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 721-730. doi: 10.1109/TTHZ.2013.2285568
    [20] 仇佩亮, 陈惠芳, 谢磊. 数字通信基础[M]. 北京: 电子工业出版社, 2007: 242-245.

    QIU P L, CHEN H F, XIE L. Fundamentals of digital communications[M]. Beijing: Publishing House of Electronics Industry, 2007: 242-245(in Chinese).
    [21] International Telecommunication Union. Calculation of free-space attenuation: ITU-R P. 525[S]. Geneva: International Telecommunication Union, 2019.
    [22] GOODY R M, YUNG Y L. Atmospheric radiation: Theoretical basis[M]. 2nd ed. Oxford: Oxford University Press, 1989: 15-17.
    [23] ROTHMAN L S, GORDON I E, BARBE A, et al. The HITRAN 2008 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(9-10): 533-572. doi: 10.1016/j.jqsrt.2009.02.013
    [24] JORNET J M, AKYILDIZ I F. Channel capacity of electromagnetic nanonetworks in the Terahertz band[C]//2010 IEEE International Conference on Communications. Piscataway: IEEE Press, 2010: 1-6.
    [25] 熊华钢, 罗志强, 张其善. 线性令牌传递网络在严格实时条件下的带宽分配方法[J]. 通信学报, 1997, 18(12): 25-31.

    XIONG H G, LUO Z Q, ZHANG Q S. Bandwidth allocation for LTPB network under real time condition[J]. Journal of China Institute of Communications, 1997, 18(12): 25-31(in Chinese).
    [26] DANG D K, MIFDAOUI A, GAYRAUD T. Design and analysis of UWB-based network for reliable and timely communications in safety-critical avionics[C]//2014 10th IEEE Workshop on Factory Communication Systems. Piscataway: IEEE Press, 2014: 1-10.
    [27] WANDELER E. Modular performance analysis and interface-based design for embedded real-time systems[D]. Zurich: Shaker Verlag Eidgenössische Technische Hochschule Zürich, 2006: 35-49.
    [28] KOPETZ H. Real-time systems: Design principles for distributed embedded applications[M]. Berlin: Springer, 2011: 154-158.
    [29] CHERNOFF H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[J]. The Annals of Mathematical Statistics, 1952, 23(4): 493-507. doi: 10.1214/aoms/1177729330
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 录用日期:  2021-08-09
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回
    常见问答