留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光场成像的燃烧颗粒粒径与速度测量方法

张弛 黄益智 王长健 仪建华 许传龙

张弛,黄益智,王长健,等. 基于光场成像的燃烧颗粒粒径与速度测量方法[J]. 北京航空航天大学学报,2023,49(4):949-956 doi: 10.13700/j.bh.1001-5965.2021.0334
引用本文: 张弛,黄益智,王长健,等. 基于光场成像的燃烧颗粒粒径与速度测量方法[J]. 北京航空航天大学学报,2023,49(4):949-956 doi: 10.13700/j.bh.1001-5965.2021.0334
ZHANG C,HUANG Y Z,WANG C J,et al. Simultaneous measurement of size and velocity of burning particles based on light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):949-956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0334
Citation: ZHANG C,HUANG Y Z,WANG C J,et al. Simultaneous measurement of size and velocity of burning particles based on light field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):949-956 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0334

基于光场成像的燃烧颗粒粒径与速度测量方法

doi: 10.13700/j.bh.1001-5965.2021.0334
基金项目: 国家自然科学基金(51976038);中央高校基本科研业务费专项资金(3203002101C3)
详细信息
    通讯作者:

    E-mail:chuanlongxu@seu.edu.cn

  • 中图分类号: V512+.3;V435

Simultaneous measurement of size and velocity of burning particles based on light field imaging

Funds: National Natural Science Foundation of China (51976038); The Fundamental Research Funds for the Central Universities (3203002101C3)
More Information
  • 摘要:

    为实现固体推进剂中金属燃料动态燃烧的精细化表征,提出一种基于光场成像的固体推进剂中燃烧颗粒粒径与速度三维动态同步测量方法。构建固体推进剂燃烧光场成像测量系统,获得金属颗粒动态燃烧过程的光场图像,通过重聚焦算法得到燃烧颗粒场的重聚焦图像;进一步开展光场相机标定实验,获取深度与最佳重聚焦参数的关系曲线;利用图像分割算法对重聚焦图像中的颗粒进行识别和定位,获取燃烧颗粒的粒径大小,并结合三维粒子跟踪技术对颗粒的轨迹和速度进行重构;开展推进剂药条燃烧实验验证研究。结果表明:光场成像技术能够获得不同深度的颗粒信息,跟踪颗粒的动态燃烧过程,并实现对燃烧金属颗粒粒径与三维速度的同步测量。

     

  • 图 1  光场双平面参数化模型

    Figure 1.  Parameterized model of light field biplane

    图 2  光场相机成像示意图

    Figure 2.  Diagram of a light field camera

    图 3  光场重聚焦原理图

    Figure 3.  Principle diagram of Light field refocusing

    图 4  颗粒速度测量流程

    Figure 4.  Flow chart of particle velocimetry

    图 5  光场成像系统与标定装置

    Figure 5.  System of light field imaging and calibration

    图 6  深度标定装置

    Figure 6.  System of calibration of depth

    图 7  深度标定曲线

    Figure 7.  Curve of depth calibration

    图 8  推进剂药条燃烧实验系统示意图

    Figure 8.  Diagram of system of propellant strip combustion experiment

    图 9  燃烧颗粒光场重聚焦

    Figure 9.  Light field refocusing of burning particles

    图 10  颗粒粒径与速度分布

    Figure 10.  Distribution of particle size and velocity

    图 11  颗粒三维运动轨迹及x-z平面投影图

    Figure 11.  3D trajectories of particles and projection of x-z plane

    图 12  颗粒三维运动速度

    Figure 12.  3D velocity of particle motion

  • [1] 王世光, 蒋太飞, 田义宏. 飞航导弹固体火箭发动机技术进展[J]. 飞航导弹, 2006(6): 47-50.

    WANG S G, JIANG T F, TIAN Y H. Technical progress of flying missile solid rocket motor[J]. Winged Missiles Journal, 2006(6): 47-50(in Chinese).
    [2] 刘佩进, 金秉宁, 李强. 战术导弹固体发动机燃烧不稳定研究概述[J]. 固体火箭技术, 2012, 35(4): 446-449.

    LIU P J, JIN B N, LI Q. Asurvey of combustion instability in tactical SRM[J]. Journal of Solid Rocket Technology, 2012, 35(4): 446-449(in Chinese).
    [3] 刘鑫. 基于光学拍摄技术的含铝固体推进剂燃面处铝团聚研究[D]. 西安: 西北工业大学, 2016: 1-3.

    LIU X. Investigation on aluminum agglomeration on the burning surface of solid propellants by optical observation technology[D]. Xi’an: Northwestern Polytechnical University, 2016: 1-3(in Chinese) .
    [4] 张宏安, 叶定友, 侯晓. 固体火箭发动机凝聚相微粒分布研究现状[J]. 固体火箭技术, 2000(3): 25-28. doi: 10.3969/j.issn.1006-2793.2000.03.006

    ZHANG H A, YE D Y, HOU X. Recent status of research on condensed-phase particles distribution in solid rocket motor[J]. Journal of Solid Rocket Technology, 2000(3): 25-28(in Chinese). doi: 10.3969/j.issn.1006-2793.2000.03.006
    [5] BALLEREAU S, GODFROY F, ORLANDI O, et al. Numerical simulations and searching methods of thrust oscillations for solid rocket motors[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
    [6] 姚龙超. 数字全息颗粒燃烧与液滴雾化测量方法与应用[D]. 杭州: 浙江大学, 2019: 1-7.

    YAO L C. Digital holographic method and application to measurement of particle combustion and droplet atomization[D]. Hangzhou: Zhejiang University, 2019: 1-7 (in Chinese).
    [7] 金秉宁, 王志新, 刘佩进, 等. 同轴数字全息用于铝燃烧颗粒的测量研究[J]. 推进技术, 2019, 40(6): 1399-1408. doi: 10.13675/j.cnki.tjjs.180371

    JIN B N, WANG Z X, LIU P J, et al. Measurement of particle size of aluminum combustion in solid propellant using digital In-line holography[J]. Journal of Propulsion Technology, 2019, 40(6): 1399-1408(in Chinese). doi: 10.13675/j.cnki.tjjs.180371
    [8] 刘鑫, 刘佩进, 关昱, 等. 复合推进剂中铝的燃烧实验研究方法[J]. 固体火箭技术, 2015, 38(6): 833-836.

    LIU X, LIU P J, GUAN Y, et al. Experiment research method of the aluminum in the composite propellant[J]. Journal of Solid Rocket Technology, 2015, 38(6): 833-836(in Chinese).
    [9] 张韶辉, 胡摇, 曹睿, 等. 光场成像原理及应用技术[J]. 兵器装备工程学报, 2020, 41(2): 178-186. doi: 10.11809/bqzbgcxb2020.02.037

    ZHANG S H, HU Y, CAO R, et al. Principle and applications of light field imaging[J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 178-186(in Chinese). doi: 10.11809/bqzbgcxb2020.02.037
    [10] 刘慧芳, 周骛, 蔡小舒, 等. 基于光场成像的三维粒子追踪测速技术[J]. 光学学报, 2020, 40(1): 219-229.

    LIU H F, ZHOU W, CAI X S, et al. Three-dimensional particle tracking velocimetry based on light field imaging[J]. Acta Optica Sinica, 2020, 40(1): 219-229(in Chinese).
    [11] GERSHUN A. The light field[J]. Journal of Mathematics and Physics, 1939, 18(1-4): 51-151. doi: 10.1002/sapm193918151
    [12] ADELSON E, BERGEN J. The plenoptic function and the elements of early vision[C]//Computational Models of Visual Processing. Cambridge: MIT Press, 1991: 3-20.
    [13] LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 31-42.
    [14] NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Computer Science Technical Report CSTR, 2005, 2(11): 1-11.
    [15] 刘欣城. 基于光场测量的成像技术研究[D]. 成都: 中国科学院大学, 2019: 4-7.

    LIU X C. Research on imaging technology based on light field measurement[D]. Chengdu: University of Chinese Academy of Sciences, 2019: 4-7(in Chinese).
    [16] 张丽, 李潇, 吴皓天, 等. 基于最大类间方差的图像分割算法研究[J]. 科技创新与应用, 2021(8): 39-41.

    ZHANG L, LI X, WU H T, et al. Research on image segmentation algorithm based on maximum variance between classes[J]. Technology Innovation and Application, 2021(8): 39-41(in Chinese).
    [17] 王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004, 9(7): 828-831. doi: 10.3969/j.issn.1006-8961.2004.07.011

    WANG H N, ZHONG W, WANG J, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics, 2004, 9(7): 828-831(in Chinese). doi: 10.3969/j.issn.1006-8961.2004.07.011
    [18] 王金岩, 史文华, 敬忠良. 基于Depth from Focus的图像三维重建[J]. 南京航空航天大学学报, 2007, 39(2): 181-186. doi: 10.3969/j.issn.1005-2615.2007.02.009

    WANG J Y, SHI W H, JING Z L. 3D recontructing of image based on depth from focus[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 181-186(in Chinese). doi: 10.3969/j.issn.1005-2615.2007.02.009
    [19] 胡文洁. 三维火焰流场中粒子重构与跟踪测速的研究[D]. 西安: 西安电子科技大学, 2017: 33-39.

    HU W J. Study on 3-D reconstruction and particle tracking velocimetry in flame flow[D]. Xi’an: Xidian University, 2017: 33-39(in Chinese) .
    [20] OHMI K, LI H Y. Particle-tracking velocimetry with new algorithms[J]. Measurement Science and Technology, 2000, 11(6): 603-616. doi: 10.1088/0957-0233/11/6/303
    [21] LIU Y D, HOSSAIN M M, SUN J. Design a cage-typed light field camera system for flame measurement[C]//IEEE SENSORS 2017. Glasgow: Institute of Electrical and Electronics Engineers , 2017.
  • 加载中
图(12)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  52
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-16
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答