留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

狭长型封闭舱室内非定常流动模拟的湍流模型比较

韩逸飞 胡雪松 高盈 张永志

韩逸飞,胡雪松,高盈,等. 狭长型封闭舱室内非定常流动模拟的湍流模型比较[J]. 北京航空航天大学学报,2023,49(4):957-964 doi: 10.13700/j.bh.1001-5965.2021.0335
引用本文: 韩逸飞,胡雪松,高盈,等. 狭长型封闭舱室内非定常流动模拟的湍流模型比较[J]. 北京航空航天大学学报,2023,49(4):957-964 doi: 10.13700/j.bh.1001-5965.2021.0335
HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0335
Citation: HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0335

狭长型封闭舱室内非定常流动模拟的湍流模型比较

doi: 10.13700/j.bh.1001-5965.2021.0335
基金项目: 中央高校基本科研业务费专项资金(2232019D3-28)
详细信息
    作者简介:

    韩逸飞 男,硕士研究生。主要研究方向:舱室内非定常流动特征

    张永志 男,博士,讲师。主要研究方向:舱室内非定常流动特征研究、人员密集型空间通风策略、建筑能耗模拟

    通讯作者:

    E-mail:zhangyongzhi@dhu.edu.cn

  • 中图分类号: V223

Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin

Funds: The Fundamental Research Funds for the Central Universities (2232019D3-28)
More Information
  • 摘要:

    针对狭长型封闭舱室内非定常流动模拟的湍流模型选择问题,以飞机舱室为典型环境,使用相似准则为依据的热缩比法搭建了实验平台。将实验结果与RNG k-ε、DES、LES三种湍流模型的数值模拟结果进行对比和分析,评估狭长型封闭舱室内非定常流动特征研究中合适的湍流模型。结果显示,RNG k-ε和DES模型可以定性描述流动变化趋势,但是LES模型在流场非定常性和不稳定性捕捉更为准确,其流场结构更接近实验结果。模拟结果与实验结果对比显示,LES模型能更加真实地反映狭长型封闭舱室非定常流动的情况。

     

  • 图 1  机舱缩比模型实验平台

    Figure 1.  Cabin scaling model experiment platform

    图 2  网格划分

    Figure 2.  Mesh division

    图 3  网格独立性检验

    Figure 3.  Mesh independence test

    图 4  测量截面示意图

    Figure 4.  Schematic diagram of measuring section

    图 5  测点分布

    Figure 5.  Distribution of measuring points

    图 6  模拟与实验温度对比

    Figure 6.  Comparison of temperature between simulation and experiment

    图 7  模拟与实验速度对比

    Figure 7.  Comparison of velocity between simulation and experiment

    图 8  速度分布对比

    Figure 8.  Comparison of velocity distribution

    图 9  流场失稳特征

    Figure 9.  Flow field instability characteristics

    表  1  相似比例尺

    Table  1.   Similar scale

    比例尺几何比例尺$ {C_L} $速度比例尺$ {C_V} $流量比例尺$ {C_G} $流量比例尺$ {C_Q} $
    数值$ 1:10 $$ \sqrt {10} :10 $$\sqrt {10} :1\;000$$\sqrt {10} :1\;000$
    下载: 导出CSV

    表  2  机舱实际与模型参数

    Table  2.   Actual and model parameters of cabin

    模型机舱长/
    m
    纵横比总风量/
    (L·s−1
    送风速度/
    (m·s−1
    总体发热量/
    W
    机舱实型3010∶11579.21.1516530
    机舱模型310∶150.3650
    下载: 导出CSV
  • [1] 刘鹤. 中英两国民航产业政策比较分析[J]. 民航管理, 2019(9): 14-16.

    LIU H. A comparative analysis of civil aviation industry policies between China and Britain[J]. Civil Aviation Management, 2019(9): 14-16(in Chinese).
    [2] 庞丽萍, 巩萌萌, 王浚, 等. 基于人体热调节模型的民机座舱热舒适性分析[J]. 北京航空航天大学学报, 2012, 38(2): 166-169. doi: 10.13700/j.bh.1001-5965.2012.02.019

    PANG L P, GONG M M, WANG J, et al. Aircraft cabin comfort analysis with human thermoregulation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2): 166-169(in Chinese). doi: 10.13700/j.bh.1001-5965.2012.02.019
    [3] LI J Y, LIU J J, PEI J J, et al. Experimental study of human thermal plumes in a small space via large-scale TR PIV system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 970-980. doi: 10.1016/j.ijheatmasstransfer.2018.07.138
    [4] ZHANG Y Z, LI J Y, LIU J J. Experimental study of the impact of passenger behavior on the aircraft cabin environment[J]. Science and Technology for the Built Environment, 2021, 27(4): 427-435. doi: 10.1080/23744731.2020.1849795
    [5] MAHMOUD S, BENNETT J S, HOSNI M H, et al. Comparison of pathogens dispersion in an aircraft cabin using gas injection source versus a coughing manikin[C]//Proceedings of ASME 2020 Fluids Engineering Division Summer Meeting. New York: ASME, 2020: V001 T 01A013.
    [6] CAO X D, LIU J J, PEI J J, et al. 2D-PIV measurement of aircraft cabin air distribution with a high spatial resolution[J]. Building and Environment, 2014, 82: 9-19. doi: 10.1016/j.buildenv.2014.07.027
    [7] LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings, 2015, 104: 147-155. doi: 10.1016/j.enbuild.2015.07.011
    [8] KIM J Y, KIM K Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2007, 22(2): 166-172.
    [9] 朱学良. 客舱内自然对流运动对流场影响的实验研究[D]. 天津: 天津大学, 2016.

    ZHU X L. The experimental research about the influence of natural convection on the flow field in the cabin mockup[D]. Tianjin: Tianjin University, 2016(in Chinese).
    [10] LIU W, WEN J Z, LIN C H, et al. Evaluation of various categories of turbulence models for predicting air distribution in an airliner cabin[J]. Building and Environment, 2013, 65: 118-131. doi: 10.1016/j.buildenv.2013.03.018
    [11] LIN C H, HORSTMAN R H, AHLERS M F, et al. Numerical simulation of airflow and airborne pathogen transport in aircraft cabins- Part Ⅰ: Numerical simulation of the flow field[J]. ASHRAE Transactions, 2005, 111(1): 755-763.
    [12] EBRAHIMI K, ZHENG Z C, HOSNI M H. LES and RANS simulation of turbulent airflow and tracer gas injection in a generic aircraft cabin model[C]//Proceedings of the Roceeding of ASME-joint Us-european Fluids Engineering Summer Meeting & International Conference on Nanochannels. New York: ASME, 2010: 227-240.
    [13] 胡滋艳. 基于地铁车厢内流动结构优化的数值模拟研究[D]. 上海: 东华大学, 2019.

    HU Z Y. Numerical simulation research on flow structure optimization in subway cabin[D]. Shanghai: Donghua University, 2019(in Chinese).
    [14] TANABE S, ARENS E A, BAUMAN F, et al. Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature[J]. ASHRAE Transactions, 1994, 100(1): 39-48.
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热环境人类工效学 代谢率的测定: GB/T 18048—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Replublic of China, Standardization Administration of the People’s Republic of China. Ergonomics of the thermal environment-Determination of metabolic rate: GB/T 18048—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [16] YAN Y H, LI X D, TU J Y. Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airliner cabin section[J]. Science and Technology for the Built Environment, 2016, 22(2): 153-163. doi: 10.1080/23744731.2015.1090254
    [17] ZHANG T, CHEN Q. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4): 1675-1684. doi: 10.1016/j.buildenv.2006.02.014
    [18] ZHANG Z, CHEN X, MAZUMDAR S, et al. Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J]. Building and Environment, 2009, 44(1): 85-94. doi: 10.1016/j.buildenv.2008.01.012
    [19] ZHANG Z, ZHANG W, ZHAI J Z, et al. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD. Part 2: Comparison with experimental data from literature[J]. HVAC & R Research, 2007, 13(6): 871-886.
    [20] ZHANG T T, LEE K, CHEN Q Y. A simplified approach to describe complex diffusers in displacement ventilation for CFD simulations[J]. Indoor Air, 2009, 19(3): 255-267. doi: 10.1111/j.1600-0668.2009.00590.x
    [21] YANG C W, ZHANG X W, CAO X D, et al. Numerical simulations of the instantaneous flow fields in a generic aircraft cabin with various categories turbulence models[J]. Procedia Engineering, 2015, 121: 1827-1835. doi: 10.1016/j.proeng.2015.09.163
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  57
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-10-26
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答