留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人直升机LPV控制律设计

段镖 杨庶 李爱军

段镖,杨庶,李爱军. 无人直升机LPV控制律设计[J]. 北京航空航天大学学报,2023,49(4):879-890 doi: 10.13700/j.bh.1001-5965.2021.0340
引用本文: 段镖,杨庶,李爱军. 无人直升机LPV控制律设计[J]. 北京航空航天大学学报,2023,49(4):879-890 doi: 10.13700/j.bh.1001-5965.2021.0340
DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0340
Citation: DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0340

无人直升机LPV控制律设计

doi: 10.13700/j.bh.1001-5965.2021.0340
详细信息
    通讯作者:

    E-mail:syang@nwpu.edu.cn

  • 中图分类号: V212.4;V249.1

Design of LPV control law for unmanned helicopter

More Information
  • 摘要:

    针对无人直升机航迹控制要求,提出一种基于线性变参数(LPV)控制理论的无人直升机一体化式飞行控制律设计方法,通过速度、侧滑角、高度和偏航角控制通道的显模型跟踪控制,实现无人直升机航迹控制。建立了无人直升机高阶非线性动力学模型,模型中考虑了旋翼桨叶挥舞和摆振运动、旋翼动态入流、机体运动之间的运动耦合,用于检验直升机高阶运动特性对控制律性能和闭环系统稳定性的影响。由于无人直升机的非线性动力学模型是典型的周期性系统,基于简谐平衡方法进行无人直升机的配平和模型线性化计算,在速度包线内得到用于控制律设计的无人直升机LPV模型,通过凸函数优化方法求解LPV控制律的参数。基于典型直升机机动,采用数值仿真方法对LPV控制律在传感器噪声影响下的控制性能进行检验,仿真结果表明:LPV控制律在速度包线内具有良好的控制性能和鲁棒性,无人直升机闭环系统在机动飞行中满足给定的性能要求。

     

  • 图 1  主旋翼桨叶的广义坐标

    Figure 1.  Generalized coordinates of main rotor blades

    图 2  LPV控制律设计的系统连接结构

    Figure 2.  System interconnections for LPV control

    图 3  滚转角、俯仰角和侧滑角配平结果

    Figure 3.  Trim results of roll, pitch, and sideslip angles

    图 4  杆输入配平结果

    Figure 4.  Trim results of stick inputs

    图 5  对偶输入指令和无人直升机响应(V = 2.5 m/s )

    Figure 5.  Doublet input commands and unmanned helicopter responses (V = 2.5 m/s )

    图 6  对偶输入指令和无人直升机响应(V = 61.7 m/s )

    Figure 6.  Doublet input commands and unmanned helicopter responses (V = 61.7 m/s )

    图 7  控制输入(V = 2.5 m/s )

    Figure 7.  Control inputs (V = 2.5 m/s )

    图 8  控制输入(V = 61.7 m/s )

    Figure 8.  Control inputs (V = 61.7 m/s )

    图 9  控制指令和无人直升机响应(水平加减速机动)

    Figure 9.  Control commands and unmanned helicopter responses (level acceleration and deceleration)

    图 10  滚转角和俯仰角响应(水平加减速机动)

    Figure 10.  Responses of roll and pitch angles (level acceleration and deceleration)

    图 11  旋翼多桨叶坐标响应(水平加减速机动)

    Figure 11.  Responses of rotor multi-blade coordinates (level acceleration and deceleration)

    图 12  控制输入(水平加减速机动)

    Figure 12.  Control inputs (level acceleration and deceleration)

    图 13  无人直升机航迹(穿桩回旋机动)

    Figure 13.  Unmanned helicopter trajectory (slalom)

    图 14  控制指令和无人直升机响应(穿桩回旋机动)

    Figure 14.  Control commands and unmanned helicopter responses (slalom)

    图 15  滚转角和俯仰角响应(穿桩回旋机动)

    Figure 15.  Responses of roll and pitch angles (slalom)

    图 16  旋翼多桨叶坐标响应(穿桩回旋机动)

    Figure 16.  Responses of rotor multi-blade coordinates (slalom)

    图 17  控制输入(穿桩回旋机动)

    Figure 17.  Control inputs (slalom)

  • [1] TAKAHASHI M D, FUJIZAWA B T, LUSARDI J A, et al. Autonomous guidance and flight control on a partial-authority Black Hawk helicopter[C]//Proceedings of AIAA Aviation Forum. Reston: AIAA, 2020: 1-39.
    [2] TAKAHASHI M D, WHALLEY M S, FLETCHER J W, et al. Development and flight testing of a flight control law for autonomous operations research on the RASCAL JUH-60A[J]. Journal of the American Helicopter Society, 2014, 59: 032007.
    [3] HALBE O, HAJEK M. Robust helicopter sliding mode control for enhanced handling and trajectory following[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(10): 1805-1821. doi: 10.2514/1.G005183
    [4] GREER W B, SULTAN C. Infinite horizon model predictive control tracking application to helicopters[J]. Aerospace Science and Technology, 2020, 98: 105675. doi: 10.1016/j.ast.2019.105675
    [5] GREER W B, SULTAN C. Shrinking horizon model predictive control method for helicopter-ship touchdown[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(5): 884-900. doi: 10.2514/1.G004374
    [6] 陈南宇, 蒙志君, 黄俊. 无人直升机飞行品质要求探讨[J]. 北京航空航天大学学报, 2016, 42(2): 337-344. doi: 10.13700/j.bh.1001-5965.2015.0125

    CHEN N Y, MENG Z J, HUANG J. Research on flying quality of unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 337-344(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0125
    [7] 吴超, 王浩文, 姜辰, 等. 基于LADRC的直升机姿态解耦控制及参数整定[J]. 北京航空航天大学学报, 2015, 41(11): 2085-2094. doi: 10.13700/j.bh.1001-5965.2014.0710

    WU C, WANG H W, JIANG C, et al. LADRC-based attitude decoupling control for helicopter and parameters tuning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2085-2094(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0710
    [8] 汪庆, 王永, 彭程, 等. 直升机两步法抗饱和控制[J]. 北京航空航天大学学报, 2011, 37(7): 888-894. doi: 10.13700/j.bh.1001-5965.2011.07.025

    WANG Q, WANG Y, PENG C, et al. Two-step anti-windup control of helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 888-894(in Chinese). doi: 10.13700/j.bh.1001-5965.2011.07.025
    [9] 赵佳, 申功璋, 陈胜功. 基于多点逆模型组的直升机慢切换姿态控制[J]. 北京航空航天大学学报, 2010, 36(7): 798-802. doi: 10.13700/j.bh.1001-5965.2010.07.028

    ZHAO J, SHENG G Z, CHEN S G. Helicopter slow switching attitude control based on multiple points inversion models group[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 798-802(in Chinese). doi: 10.13700/j.bh.1001-5965.2010.07.028
    [10] RUGH W J, SHAMMA J S. Research on gain scheduling[J]. Automatica, 2000, 36: 1401-1425. doi: 10.1016/S0005-1098(00)00058-3
    [11] WU F, YANG X H, PACKARD A, et al. Induced L2-norm control for LPV systems with bounded parameter variation rates[J]. International Journal of Robust and Nonlinear Control, 1996, 6: 983-998. doi: 10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
    [12] HUGHES H, WU F. H LPV state feedback control for flexible hypersonic vehicle longitudinal dynamics[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 1-13.
    [13] SIGTHORSSON D O, SERRANI A, BOLENDER M A, et al. LPV control design for over-actuated hypersonic vehicles models[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 1-24.
    [14] BALAS G J, FIALHO I, PACK A, et al. On the design of LPV controllers for the F-14 aircraft lateral-directional axis during powered approach[C]//Proceedings of the 1997 American Control Conference. Reston: AIAA, 1997: 123-127.
    [15] BITTANTI S, CUZZOLA F A, LOVERA M, et al. An LPV-LMI approach to generalised active control of vibrations in helicopters[C]//Proceedings of the 1999 European Control Conference. Piscataway: IEEE Press, 1999: 2783-2788.
    [16] SUN X D, POSTLETHWAITE I. Affine LPV modelling and its use in gain-scheduled helicopter control[C]//Proceedings of UKACC International Conference on Control. Piscataway: IEEE Press, 1998: 1504-1509.
    [17] POSTLETHWAITE I, KONSTANTOPOULOS I K, SUN X D, et al. Design, flight simulation, and handling qualities evaluation of an LPV gain-scheduled helicopter flight control system[J]. European Journal of Control, 2000, 6: 553-566. doi: 10.1016/S0947-3580(00)71119-8
    [18] CHEN R T N, HINDSON W S. Influence of high-order dynamics on helicopter flight-control system bandwidth[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(2): 190-197. doi: 10.2514/3.20089
    [19] DRYFOOS J B, KOTHMANN B D, MAYO J. An approach to reducing rotor-body coupled roll oscillations on the RAH-66 Comanche using modified roll rate feedback[C]//Proceedings of the American Helicopter Society 55th Annual Forum. Fairfax: AHS, 1999: 1-14.
    [20] HOWLETT J J. UH-60A Black Hawk engineering simulation program: Volume 1 - mathematical model: NASA CR 166309[R]. Washington, D. C.: NASA, 1981: 5-361.
    [21] PADFIELD G D. Helicopter flight dynamics[M]. 2nd ed. Oxford: Blackwell Publishing Ltd, 2007: 175-179.
    [22] STEVENS B L, LEWIS F L, JOHNSON E N. Aircraft control and simulation[M]. 3rd ed. Hoboken: John Wiley & Sons Inc, 2015: 34-45.
    [23] DUVAL R W. Inertial dynamics of a general purpose rotor model: NASA TM-78557[R]. Washington, D. C.: NASA, 1979: 6-34.
    [24] PITT D M, PETERS D A. Theoretical prediction of dynamics inflow derivatives[J]. Vertica, 1981, 5(1): 21-34.
    [25] BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA TM-88360[R]. Washington, D. C.: NASA, 1987: 23-26.
    [26] KIM F D, CELI R, TISCHLER M B. Forward flight trim and frequency response validation of a helicopter simulation model[J]. Journal of Aircraft, 1993, 30(6): 854-863. doi: 10.2514/3.46427
    [27] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. Berlin: Springer, 2006: 136-142.
    [28] JOHNSON W. Rotorcraft aeromechanics[M]. New York: Cambridge University Press, 2013: 549-562.
    [29] MARCOS A, BALAS G J. Development of linear-parameter-varying models for aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 218-228. doi: 10.2514/1.9165
    [30] AKARIAN P, ADAMS R J. Advanced gain-scheduling techniques for uncertain systems[J]. IEEE Transactions on Control System Technology, 1998, 6(1): 21-32. doi: 10.1109/87.654874
    [31] BASKETT B J. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft: ADS-33E-PRF[S]. Alabama: United States Army Aviation and Missile Command, 2000: 35-36.
  • 加载中
图(17)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  82
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 录用日期:  2021-10-29
  • 网络出版日期:  2021-11-16
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答