留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲率连续造型方法对激波噪声的影响机理

赵天铭 侯杰萱 柳阳威

赵天铭,侯杰萱,柳阳威. 曲率连续造型方法对激波噪声的影响机理[J]. 北京航空航天大学学报,2023,49(4):922-931 doi: 10.13700/j.bh.1001-5965.2021.0342
引用本文: 赵天铭,侯杰萱,柳阳威. 曲率连续造型方法对激波噪声的影响机理[J]. 北京航空航天大学学报,2023,49(4):922-931 doi: 10.13700/j.bh.1001-5965.2021.0342
ZHAO T M,HOU J X,LIU Y W. Influence mechanism of continuous curvature shaping method on buzz-saw noise[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):922-931 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0342
Citation: ZHAO T M,HOU J X,LIU Y W. Influence mechanism of continuous curvature shaping method on buzz-saw noise[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):922-931 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0342

曲率连续造型方法对激波噪声的影响机理

doi: 10.13700/j.bh.1001-5965.2021.0342
基金项目: 国家自然科学基金(51976006,51790513)
详细信息
    通讯作者:

    E-mail:liuyangwei@126.com

  • 中图分类号: V231.3

Influence mechanism of continuous curvature shaping method on buzz-saw noise

Funds: National Natural Science Foundation of China (51976006,51790513)
More Information
  • 摘要:

    激波噪声是大涵道比涡扇发动机噪声的主要来源。为降低风扇/压气机叶片叶尖产生的激波噪声,对轴向亚音、相对超音的基元级叶型前缘脱体激波系进行研究。基于几何Hermit差值法(GHI)思想,提出一种3段式贝塞尔(Bezier)曲线构造曲率连续前缘叶型的方法,在完成改型设计时拥有更高的自由度。通过改变前缘上3段Bezier曲线间过渡点位置,探究局部曲率优化、整体曲率优化及带厚度补偿的改型方式对前缘处外伸激波强度和激波噪声的影响。通过对比研究不同数值模拟,结果表明:曲率连续前缘设计能减小叶型前缘处过膨胀区大小,减小由此产生的逆压梯度;局部曲率优化和整体曲率优化的方式能够分别在距前缘1倍弦长处降低噪声1.6 dB和4.6 dB。

     

  • 图 1  3段式前缘设计法示意图

    Figure 1.  Diagram of three-segment leading edge design

    图 2  GHI法示意图

    Figure 2.  Diagram of GHI method

    图 3  前缘段设计示意图

    Figure 3.  Diagram of blade leading edge section design

    图 4  过渡段设计示意图

    Figure 4.  Diagram of transition section design

    图 5  CM-1.2中弧线斜率分布图

    Figure 5.  Gradient distribution of medial line in CM-1.2

    图 6  三段式前缘设计展示

    Figure 6.  Display of three-segment leading edge design

    图 7  前缘曲率分布

    Figure 7.  Curvature distribution in leading-edge area

    图 8  网格无关性验证

    Figure 8.  Mesh independency

    图 9  网格拓扑结构

    Figure 9.  Structure of mesh topology

    图 10  声学网格选取区域

    Figure 10.  Diagram of sound mesh selection

    图 11  马赫数云图

    Figure 11.  Contour of mach number contour

    图 12  叶表压力分布图

    Figure 12.  Pressure distribution on blade surface

    图 13  激波角示意图

    Figure 13.  Diagram of shock-wave angle

    图 14  激波强度对比

    Figure 14.  Comparison of shock wave strength

    图 15  声功率级对比

    Figure 15.  Comparison of sound power level

    表  1  算例过渡点坐标数据

    Table  1.   Example of transition points coordinate data

    算例名x′/mmy′/mm
    算例X2Y11.30.18
    算例X2Y21.30.23
    算例X2Y31.30.28
    算例X1Y20.80.23
    算例X2Y21.30.23
    算例X3Y21.80.23
    下载: 导出CSV

    表  2  激波角及真实马赫数数据

    Table  2.   Shock-wave angle and real mach number

    算例名x′/mmy′/mm激波角/(°)真实马赫数
    CM-1.219.51.2035
    算例X2Y11.30.1817.51.2082
    算例X2Y21.30.2318.51.2068
    算例X2Y31.30.2818.81.2056
    算例X1Y20.80.2319.01.2059
    算例X2Y21.30.2318.51.2068
    算例X3Y21.80.2318.01.2074
    下载: 导出CSV

    表  3  降噪效果

    Table  3.   Noise reduction

    算例名x′/mmy′/mm降噪效果/dB
    算例X2Y11.30.181.63
    算例X2Y21.30.230.25
    算例X2Y31.30.280
    算例X1Y20.80.23−0.1
    算例X3Y21.80.230.70
    下载: 导出CSV
  • [1] 梁春华, 孙广华. 商用飞机发动机先进降噪技术[J]. 航空科学技术, 2011, 22(4): 48-52. doi: 10.3969/j.issn.1007-5453.2011.04.015

    LIANG C H, SUN G H. Advanced noise reduction technology for large commercial aircraft engines[J]. Aeronautical Science & Technology, 2011, 22(4): 48-52(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.04.015
    [2] International Civil Aviation Organization. AN16-1 Environmental protection: Volume I: Aircraft noise ANN-00016-001-01[S]. Quebec: International Civil Aviation Organization, 2017: 1-250
    [3] ELDREDGE J D. On the interaction of higher duct modes with a perforated liner system with bias flow[J]. Journal of Fluid Mechanics, 2004, 510: 303-331. doi: 10.1017/S0022112004009504
    [4] FITE E B. Aerodynamic performance measurements for a forward swept low noise fan: NASA/TM-2006-214413[R]. Washington D. C.: National Aeronautics and Space Administration, 2006.
    [5] 周振华. 前缘形状对风扇/压气机激波噪声的影响[D]. 北京: 北京航空航天大学, 2015: 1-72

    ZHOU Z H. Influence of leading edge shape on shock noise of fan/compressor[D]. Beijing: Beihang University, 2015: 1-72(in Chinese).
    [6] 葛健. 风扇激波噪声的降噪研究[D]. 北京: 北京航空航天大学, 2017: 1-83.

    GE J. Research on noise reduction of fan shock wave noise[D]. Beijing: Beihang University, 2017: 1-83(in Chinese).
    [7] 葛健, 柳阳威, 周振华, 等. 吸力面波系分布对风扇激波噪声的影响[J]. 工程热物理学报, 2018, 39(11): 2389-2397.

    GE J, LIU Y W, ZHOU Z H, et al. The influence of wave system on the suction surface on the buzz-saw noise of turbofan[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2389-2397(in Chinese).
    [8] 陆宏志, 徐力平. 压气机叶片的带平台圆弧形前缘[J]. 推进技术, 2003, 24(6): 532-536. doi: 10.3321/j.issn:1001-4055.2003.06.014

    LU H Z, XU L P. Circular leading edge with a flat for compressor blades[J]. Journal of Propulsion Technology, 2003, 24(6): 532-536(in Chinese). doi: 10.3321/j.issn:1001-4055.2003.06.014
    [9] 靳军, 刘波, 南向谊, 等. 超声速叶型前缘几何形状对叶栅气动性能的影响[J]. 航空动力学报, 2007, 22(4): 660-665. doi: 10.3969/j.issn.1000-8055.2007.04.022

    JIN J, LIU B, NAN X Y, et al. Influence effect of supersonic airfoil’s leading edge geometric shape on aero-dynamical performance of cascade[J]. Journal of Aerospace Power, 2007, 22(4): 660-665(in Chinese). doi: 10.3969/j.issn.1000-8055.2007.04.022
    [10] 宋寅, 顾春伟. 曲率连续的压气机叶片前缘设计方法[J]. 推进技术, 2013, 34(11): 1474-1481.

    SONG Y, GU C W. Continuous curvature leading edge of compressor blading[J]. Journal of Propulsion Technology, 2013, 34(11): 1474-1481(in Chinese).
    [11] 宋寅, 顾春伟. 叶片前缘形状对压气机气动性能的影响[J]. 工程热物理学报, 2013, 34(6): 1051-1054.

    SONG Y, GU C W. Effect of leading edge shape on the aerodynamic performance of compressor[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1051-1054(in Chinese).
    [12] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897.

    LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7): 890-897(in Chinese).
    [13] 杨炯, 宁涛, 席平. 前缘点曲率可控的曲率连续前缘几何设计[J]. 计算机辅助设计与图形学学报, 2016, 28(7): 1195-1200. doi: 10.3969/j.issn.1003-9775.2016.07.021

    YANG J, NING T, XI P. Geometric design of leading edge with specified curvature at leading edge point[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(7): 1195-1200(in Chinese). doi: 10.3969/j.issn.1003-9775.2016.07.021
    [14] 施恒涛, 刘宝杰, 于贤君. 基于多项式的曲率连续前缘造型方法及应用[J]. 航空动力学报, 2020, 35(2): 397-409.

    SHI H T, LIU B J, YU X J. Polynomial-based continuous-curvature leading edge design method and its application[J]. Journal of Aerospace Power, 2020, 35(2): 397-409(in Chinese).
    [15] PRASAD D, FENG J Z. Propagation and decay of shock waves in turbofan engine inlets[J]. Journal of Turbomachinery, 2005, 127(1): 118-127. doi: 10.1115/1.1811102
    [16] HAN F, SHARMA A, PALIATH U, et al. Multiple pure tone noise prediction[J]. Journal of Sound and Vibration, 2014, 333(25): 6942-6959. doi: 10.1016/j.jsv.2014.08.006
    [17] LEWY S, POLACSEK C, BARRIER R. Analytical and numerical prediction of harmonic sound power in the inlet of aero-engines with emphasis on transonic rotation speeds[J]. Journal of Sound and Vibration, 2014, 333(26): 7165-7182. doi: 10.1016/j.jsv.2014.06.013
    [18] MOECKEL W E. Approximate method for predicting from and location of detached shock waves ahead of plane or axially symmetric bodies: NACA-TN-1921 [R]. Washington D. C.: National Aeronautics and Space Administration, 1949.
    [19] DE BOOR C, HÖLLIG K, SABIN M. High accuracy geometric Hermite interpolation[J]. Computer Aided Geometric Design, 1987, 4(4): 269-278. doi: 10.1016/0167-8396(87)90002-1
    [20] 徐良宏, 孟勇, 陈铁. 给定两端点及端点处切方向和曲率的空间Bezier曲线的插值问题[J]. 数值计算与计算机应用, 2001, 22(2): 81-86. doi: 10.3969/j.issn.1000-3266.2001.02.001

    XU L H, MENG Y, CHEN T. Space curve interpolation of given end points tangent directions and curvatures[J]. Journal of Unmerical Methods and Computer Applications, 2001, 22(2): 81-86(in Chinese). doi: 10.3969/j.issn.1000-3266.2001.02.001
    [21] 邱名. 高级压比轴流压气机转子通道内激波组织研究[D]. 南京: 南京航空航天大学, 2014: 186-188.

    QIU M. Investigation of shock organization in axial compressor passages of high pressure ratio[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 186-188(in Chinese).
    [22] PRASAD A. Evolution of upstream propagating shock waves from a transonic compressor rotor[J]. Journal of Turbomachinery, 2003, 125(1): 133-140. doi: 10.1115/1.1516813
    [23] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136. doi: 10.1016/0021-9991(79)90145-1
    [24] MORFEY C L. The acoustics of axial flow machines[J]. Journal of Sound and Vibration, 1972, 22(4): 445-466. doi: 10.1016/0022-460X(72)90455-5
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  44
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 录用日期:  2021-09-26
  • 网络出版日期:  2021-11-15
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答