留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干涉接触的前缘缝翼尾缘结构设计与分析

冯蕴雯 张家乐 薛小锋 毛艺皓 袁坚锋

冯蕴雯,张家乐,薛小锋,等. 基于干涉接触的前缘缝翼尾缘结构设计与分析[J]. 北京航空航天大学学报,2023,49(4):761-767 doi: 10.13700/j.bh.1001-5965.2021.0353
引用本文: 冯蕴雯,张家乐,薛小锋,等. 基于干涉接触的前缘缝翼尾缘结构设计与分析[J]. 北京航空航天大学学报,2023,49(4):761-767 doi: 10.13700/j.bh.1001-5965.2021.0353
FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0353
Citation: FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0353

基于干涉接触的前缘缝翼尾缘结构设计与分析

doi: 10.13700/j.bh.1001-5965.2021.0353
基金项目: 国家自然科学基金(51875465)
详细信息
    通讯作者:

    E-mail:zhangjiale_work@163.com

  • 中图分类号: V222

Structural design and analysis of leading edge slat interference trailing edge

Funds: National Natural Science Foundation of China (51875465)
More Information
  • 摘要:

    前缘缝翼是大型飞机起飞与降落阶段重要的增升装置,但受自身结构刚度及其支持刚度影响,承受气动载荷时缝翼易发生翘曲变形,与翼盒产生缝隙,影响到机翼的气动效率。为消除巡航状态缝翼的变形,提高机翼气动效率,提出前缘缝翼干涉尾缘结构设计技术。对影响前缘缝翼结构法向和弦向变形的主要因素进行理论分析。以国内某大型飞机前缘缝翼为研究对象,针对蒙皮等各结构尺寸对前缘缝翼本体刚度的影响,从质量和变形两方面进行详细论述。在保持原有前缘缝翼结构尺寸、质量的前提下,进行前缘缝翼干涉尾缘结构的设计。结果表明:所提的前缘缝翼干涉尾缘结构在巡航工况气动载荷下,可以保持与机翼不分离的状态,提高气动性能,且有效避免了质量的增加。

     

  • 图 1  前缘缝翼干涉尾缘设计流程

    Figure 1.  Design flow chart of leading edge slat interference trailing edge

    图 2  前缘缝翼双支点梁受力图[21]

    Figure 2.  Stress diagram of leading edge slat double fulcrum beam[21]

    图 3  双支点梁挠度

    Figure 3.  Deflection of double fulcrum beam

    图 4  气动载荷下方案7的应力云图

    Figure 4.  Stress nephogram of scheme 7 under aerodynamic load

    图 5  气动载荷下方案7的变形云图

    Figure 5.  Deformation nephogram of scheme 7 under aerodynamic load

    图 6  前缘缝翼尾缘与机翼翼盒理论干涉

    Figure 6.  Theoretical interference between leading edge slat trailing edge and wing box

    图 7  8000 N回复力下前缘缝翼重力方向的变形云图

    Figure 7.  Deformation nephogram of leading edge slat in gravity direction under 8000 N recovery force

    图 8  尾缘各段耦合结果

    Figure 8.  Coupling results of each segment of trailing edge

    图 9  方案d尾缘重力方向变形曲线

    Figure 9.  Deformation curve of trailing edge in gravity direction of scheme d

    图 10  方案d前缘缝翼重力方向的变形云图

    Figure 10.  Deformation nephogram of leading edge slat in gravity direction under scheme d

    图 11  尾缘重力方向变形曲线

    Figure 11.  Gravity deformation curve of trailing edge

    表  1  不同前缘缝翼本体刚度相关结构尺寸

    Table  1.   Structural dimensions of different leading edge slat body stiffness mm

    方案蒙皮
    厚度
    普通肋端肋加强肋
    腹板厚度缘条宽度缘条厚度腹板厚度缘条宽度缘条厚度腹板厚度缘条宽度缘条厚度腹板厚度缘条宽度缘条厚度
    11.61.6201.6212223028452
    23.21.6201.6212223028452
    31.63.2403.2212223028452
    41.61.6201.6424423028452
    51.61.6201.6212246048452
    61.61.6201.62122230216904
    71.61.6201.62122230216452
    下载: 导出CSV

    表  2  不同方案结果对比分析

    Table  2.   Comparative analysis of results of different schemes

    方案最大应
    力/MPa
    应力相对
    变化/%
    最大变
    形/mm
    变形相对
    变化/%
    质量/kg质量相对
    变化/%
    1250.05.73319.18
    2180.2−27.93.065−46.532.3268.5
    3233.5−6.65.302−7.523.3521.7
    4249.7−0.15.274−8.023.4022.0
    5250.30.15.667−1.219.783.1
    6199.2−20.35.245−8.519.793.2
    7205.4−17.85.368−6.419.783.1
    下载: 导出CSV

    表  3  四种仿真结果分析

    Table  3.   Analysis of four simulation results

    回复力/N尾缘重力方向
    最大变形/mm
    尾缘重力方向
    最小变形/mm
    60002.372 0.863
    70001.867 0.198
    80001.365–0.466
    85000.959–1.139
    下载: 导出CSV

    表  4  尾缘各段回复力结果

    Table  4.   Recovery force of each segment of trailing edge N

    施加点回复力
    方案a方案b方案c方案d
    RP2400450450650
    RP3400400400500
    RP4375375375400
    RP5375375375375
    RP14200420045004500
    RP6375375375375
    RP7375375375400
    RP8400400400500
    RP9400450450650
    总计7300740077008350
    下载: 导出CSV

    表  5  八种仿真结果分析

    Table  5.   Analysis of eight simulation results

    回复力/N尾缘重力方向
    最大变形/mm
    尾缘重力方向
    最小变形/mm
    60002.3720.863
    70001.8670.198
    7300(方案a)1.5630.273
    7400(方案b)1.3060.266
    7700(方案c)1.286−0.025
    80001.365−0.455
    8350(方案d)−1.194−0.073
    85000.959−1.139
    下载: 导出CSV
  • [1] 翟晨. 大型高抗浪水陆两栖飞机增升装置设计[D]. 南京: 南京航空航天大学, 2019: 3-5.

    ZHAI C. Aerodynamic design of high-lift devices for a large-scale amphibious aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 3-5(in Chinese).
    [2] 李正洲. 某型客机增升装置的气动/机构优化设计[D]. 南京: 南京航空航天大学, 2013: 1-5.

    LI Z Z. Aero-mechanical optimization design of a civil aircraft’s high-lift system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-5(in Chinese).
    [3] 刘明. 支线客机增升装置气动分析与优化设计[D]. 南京: 南京航空航天大学, 2012: 3-5.

    LIU M. Aerodynamic analysis and optimization design of regional jet’s high-lift device[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 3-5(in Chinese).
    [4] 《飞机设计手册》总编委会. 飞机设计手册. 第9册[M]. 北京: 航空工业出版社, 2002: 428-428.

    General Editorial Board of Aircraft Design Manual. Aircraft design manual. Volume 9[M]. Beijing: Aviation Industry Press, 2002: 428-429(in Chinese).
    [5] RECKZEH D. Aerodynamic design of the high-lift-wing for a Megaliner aircraft[J]. Aerospace Science and Technology, 2003(2): 107-119.
    [6] DIMINO I, AMENDOLA G, AMOROSO F, et al. Morphing technologies: Adaptive ailerons[J/OL]. Recent Progress in Some Aircraft Technologies, 2016(2016-09-08)[2021-06-01]. https://www.intechopen.com/chapters/50748.
    [7] 仪志胜, 何景武. 民用飞机后缘襟翼机构设计仿真计算研究[J]. 飞机设计, 2010, 30(1): 43-46. doi: 10.3969/j.issn.1673-4599.2010.01.010

    YI Z S, HE J W. Mechanical design and research of trailing edge flap for civil aircraft[J]. Aircraft Design, 2010, 30(1): 43-46(in Chinese). doi: 10.3969/j.issn.1673-4599.2010.01.010
    [8] FRANCOIS C, EDMUND K. Actuation system for deploying high-lift device on leading edge of aircraft wing: U. S. Patent WO2009056873-A1[P]. 2010-07-29.
    [9] POTT-POLLENSKE M, WILD J W, BERTSCH L. Aerodynamic and acoustic design of silent leading edge device: AIAA 2014-2076[R]. Reston: AIAA, 2014.
    [10] PAGANI C C, SOUZA D S, MEDEIROS M A F. Experimental investigation on the effect of slat geometrical configurations on aerodynamic noise[J]. Journal of Sound and Vibration, 2017, 394: 256-279. doi: 10.1016/j.jsv.2017.01.013
    [11] 杨小权, 丁珏, 翁培奋, 等. 大型客机增升装置前缘缝翼噪声波纹控制技术[C]//中国航空学会声学分会2020年度学术交流会, 2020: 46.

    YANG X Q, DING Y, WONG P F, et al. Noise ripple control technology for leading edge slats of lift augmenter for large passenger aircraft[C]//Academic Exchange Meeting of Acoustics Branch of CAAC in 2020, 2020: 46(in Chinese).
    [12] 邓一菊, 廖振荣, 段卓毅. 前缘缝翼内型的气动设计研究[J]. 空气动力学学报, 2014, 32(3): 400-404.

    DENG Y J, LIAO Z R, DUAN Z Y. The aerodynamic design research on slat coves[J]. Acta Aerodynamica Sinica, 2014, 32(3): 400-404(in Chinese).
    [13] OLSON L E, MCGOWAN P R, GUEST C J, et al. Leading-edge slat optimization for maximum airfoil lift[R]. [S.l.]: NASA Technical Memorandum, 1979.
    [14] 王红建, 田峻源, 罗望. 缝翼结构参数对缝翼噪声影响的三维仿真分析[J]. 西北工业大学学报, 2019, 37(6): 1129-1137. doi: 10.3969/j.issn.1000-2758.2019.06.006

    WANG H J, TIAN J Y, LUO W. Three-dimensional simulation analysis of the influence of slat structural parameters on slat aerodynamic noise[J]. Journal of Northwestern Polytechnical University, 2019, 37(6): 1129-1137(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.06.006
    [15] 钟园, 陈勇, 陈真利, 等. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019, 40(9): 623050.

    ZHONG Y, CHEN Y, CHEN Z L, et al. Design of slat of blended-wing-body low speed testing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623050(in Chinese).
    [16] WANG C, KHODAPARAST H H, FRISWELL M I, et al. Conceptual-level evaluation of a variable stiffness skin for a morphing wing leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(15): 5703-5716. doi: 10.1177/0954410019855576
    [17] 何志全. 某型飞机前缘缝翼蒙皮厚度优化[J]. 江苏科技信息, 2015(21): 54-56. doi: 10.3969/j.issn.1004-7530.2015.21.019

    HE Z Q. Optimization on slat skin thickness of a certain type of aircraft[J]. Jiangsu Science & Technology Information, 2015(21): 54-56(in Chinese). doi: 10.3969/j.issn.1004-7530.2015.21.019
    [18] 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650.

    ZHANG Z H, LI D, YANG Y. Passive flow control of multi-element airfoils using slat mini-trailing edge device[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120650(in Chinese).
    [19] 许可, 章荣平, 张刘, 等. 大飞机缝翼滑轨影响研究[J]. 空气动力学学报, 2016, 34(3): 368-372.

    XU K, ZHANG R P, ZHANG L, et al. Research on influence of slat brackets of large airplane[J]. Acta Aeronautica Sinica, 2016, 34(3): 368-372(in Chinese).
    [20] NIU M C Y. Airframe structural design[M]. Hongkong: Conmilit Press Ltd., 2008: 417-420.
    [21] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2017: 183-202.

    LIU H W. Mechanics of materials[M]. Beijing: Higher Education Press, 2017: 183-202(in Chinese).
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  18
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 录用日期:  2021-09-26
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2021-10-09

目录

    /

    返回文章
    返回
    常见问答