留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轴刚性旋翼直升机着舰飞行特性

苏大成 汪正中 吴令华 黄水林

苏大成,汪正中,吴令华,等. 共轴刚性旋翼直升机着舰飞行特性[J]. 北京航空航天大学学报,2023,49(4):832-841 doi: 10.13700/j.bh.1001-5965.2021.0358
引用本文: 苏大成,汪正中,吴令华,等. 共轴刚性旋翼直升机着舰飞行特性[J]. 北京航空航天大学学报,2023,49(4):832-841 doi: 10.13700/j.bh.1001-5965.2021.0358
SU D C,WANG Z Z,WU L H,et al. Flight characteristics of coaxial-rigid-rotor helicopter during deck landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):832-841 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0358
Citation: SU D C,WANG Z Z,WU L H,et al. Flight characteristics of coaxial-rigid-rotor helicopter during deck landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):832-841 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0358

共轴刚性旋翼直升机着舰飞行特性

doi: 10.13700/j.bh.1001-5965.2021.0358
详细信息
    通讯作者:

    E-mail:1462177095@qq.com

  • 中图分类号: V211

Flight characteristics of coaxial-rigid-rotor helicopter during deck landing

More Information
  • 摘要:

    建立一套能够耦合非定常舰船流场的共轴刚性旋翼直升机飞行动力学模型,以研究该旋翼飞行器在着舰过程中的飞行特性。在舰艉流场模拟方面,采用分离涡方法以获得高精度非定常流场数据;在飞行力学建模方面,引入上下旋翼干扰因子建立共轴刚性旋翼诱导速度模型,并采用等效挥舞运动概念建立其挥舞运动方程;基于“单向耦合”思想构建了计算流体动力学(CFD)向飞行力学模型的数据传递策略,并分别以XH-59A直升机和UH-60A/SFS2组合为算例验证了飞行动力学模型和数据传递策略的正确性。以SFS2舰船模型和XH-59A共轴刚性旋翼直升机组合为研究对象,从直升机操纵余量和非定常载荷水平两方面分析了着舰过程中舰艉流场对共轴刚性旋翼直升机的扰动特征。时均研究结果显示:由于共轴上下旋翼受时均流场的扰动存在差异,飞行员在增大总距以维持高度稳定的同时,还需要减小差动总距以保持机头朝向的稳定。非定常水平研究结果表明:对于共轴构型直升机,舰船流场对拉力及俯仰力矩的非定常扰动,是引起飞行员工作载荷增大的主要因素。

     

  • 图 1  XH-59A共轴刚性旋翼直升机示意图

    Figure 1.  Schematic of XH-59A coaxial-rigid-rotor helicopter

    图 2  共轴上、下旋翼干扰示意图

    Figure 2.  Schematic of interactions between upper and lower rotors

    图 3  刚性旋翼及其等效铰

    Figure 3.  Schematic of rigid rotor flapping equivalence

    图 4  共轴双旋翼直升机气动载荷计算点示意图

    Figure 4.  Schematic of aerodynamic computation points for coaxial-rigid-rotor helicopter

    图 5  XH-59A稳定飞行时的操纵量及姿态角

    Figure 5.  Control inputs and attitudes of XH-59A in steady flight

    图 6  横向侧移过程中时均拉力系数变化曲线

    Figure 6.  Variations of time-averaged thrust coefficient during lateral translation

    图 7  舰载直升机着舰技术示意图

    Figure 7.  Schematic of landing techniques for shipboard helicopters

    图 8  SFS2舰船网格

    Figure 8.  Mesh for SFS2 ship model

    图 9  不同侧移高度下操纵量、姿态角及需用功率变化曲线

    Figure 9.  Variations of control inputs, attitudes and required power for different height of landing path

    图 10  $y/B = 0$位置处上、下旋翼拉力系数时间历程及PSD曲线

    Figure 10.  Time-histories and power spectral density plots of thrust coefficient for the upper and lower rotor at $y/B = 0$

    图 11  不同侧移高度下非定常载荷水平的变化曲线

    Figure 11.  Variation of RMS loads during lateral translation for different height of landing path

    图 12  $1.0H$平面内垂向湍流强度分布

    Figure 12.  Distributions of vertical turbulent intensity in $1.0H$ plane

    图 13  共轴双旋翼上、下旋翼拉力RMS值变化曲线

    Figure 13.  Variations of RMS thrust for the upper, lower and coaxial rotors

  • [1] KÄÄRIÄ C H, WANG Y, PADFIELD G D, et al. Aerodynamic loading characteristics of a model-scale helicopter in a ship’s airwake[J]. Journal of Aircraft, 2012, 49(5): 1271-1278. doi: 10.2514/1.C031535
    [2] YUE M, WEI W, HAO H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology, 2019, 85: 474-480. doi: 10.1016/j.ast.2018.12.030
    [3] JI H L, CHEN R L, LI P. Real-time simulation model for helicopter flight task analysis in turbulent atmospheric environment[J]. Aerospace Science and Technology, 2019, 92: 289-299. doi: 10.1016/j.ast.2019.05.066
    [4] FORREST J S, OWEN I, PADFIELD G D, et al. Ship-helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes[J]. Journal of Aircraft, 2012, 49(4): 1020-1031. doi: 10.2514/1.C031525
    [5] ALPMAN E, LONG L N, BRIDGES D O, et al. Fully-coupled simulations of the rotorcraft/ship dynamic interface[J]. Annual Forum Proceedings-American Helicopter Society, 2007, 63(2): 1367.
    [6] HODGE S J, ZAN S J, ROPER D M. Time-accurate ship airwake and unsteady aerodynamic loads modeling for maritime helicopter simulation[J]. Journal of the American Helicopter Society, 2009, 54(2): 022005. doi: 10.4050/JAHS.54.022005
    [7] BOGSTAD M C, HABASHI W G, AKEL I. Computational-fluid-dynamics based advanced ship-airwake database for helicopter flight simulators[J]. Journal of Aircraft, 2002, 39(5): 830-838. doi: 10.2514/2.3003
    [8] ROPER D M, OWEN I, PADFIELD G D, et al. Integrating CFD and piloted simulation to quantify ship-helicopter operating limits[J]. Aeronautical Journal, 2006, 110(1109): 419-428. doi: 10.1017/S0001924000001329
    [9] LEE D, HORN J F , LONG L N , et al. Simulation of helicopter shipboard launch and recovery with time-accurate airwakes[J]. Journal of Aircraft, 2005, 42(2): 448-461.
    [10] 杨俊. 共轴式直升机舰面起降风限图计算[J]. 海军航空工程学院学报, 2017, 32(1): 149-153. doi: 10.7682/j.issn.1673-1522.2017.01.009

    YANG J. Calculation of save operation envelope of a coaxial helicopter on shipboard[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 32(1): 149-153(in Chinese). doi: 10.7682/j.issn.1673-1522.2017.01.009
    [11] PHELPS A E, MINECK R E. Aerodynamic characteristics of a counter-rotating, coaxial, hingeless rotor helicopter model with auxiliary propulsion: NASA-TM-78705[R]. Washington, D. C.: NASA, 1978.
    [12] FELKER F F. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter: NASA-TM-81329[R]. Washirgton, D.C.: NASA, 1981.
    [13] LIESHMAN J G, ANANTHAN S. An optimum coaxial rotor system for axial flight[J]. Journal of the American Helicopter Society, 2008, 53(4): 367-381.
    [14] BURGESS R K. The ABCTM rotor: A historical perspective[C]// The American Helicopter Society 60th Annual Forum. Virginia: American Helicopter Society, 2004: 2306-2352.
    [15] WALSH D, WEINER S, ARIFIAN K. High airspeed testing of the sikorsky X-2 technologyTM demonstrator[C]// The 67th Annual Forum of the American Helicopter Society International. Virginia: American Helicopter Society, 2011: 2999-3010.
    [16] 袁野, 陈仁良, 李攀. 共轴刚性旋翼旋翼飞行器配平特性及验证[J]. 南京航空航天大学学报, 2016, 48(2): 186-193.

    YUAN Y, CHEN R L, LI P. Trim characteristics and verification of coaxial rigid rotor aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 186-193(in Chinese).
    [17] 袁野, 陈仁良, 李攀, 等. 共轴刚性旋翼直升机旋翼控制相位角问题分析[J]. 北京航空航天大学学报, 2017, 43(10): 2047-2053. doi: 10.13700/j.bh.1001-5965.2016.0812

    YUAN Y, CHEN R L, LI P, et a1. Rotor control phase angle analysis for coaxial rigid rotor helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2047-2053(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0812
    [18] KÄÄRIÄ C H, FORREST J S, OWEN I , et al. Simulated aerodynamic loading of an SH-60B helicopter in a ship’s airwake[C]// 35th European Rotorcraft Forum. Hamburg: German Aerospace Society, 2009: 101296.
    [19] ZHANG F, XU H, BALL N G. Numerical simulation of unsteady flow over SFS2 ship model[C]// 47th AIAA Aerospace Sciences Meeting and Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 090081.
    [20] LEE R G, ZAN S J. Unsteady aerodynamic loading on a helicopter fuselage in a ship airwake[J]. Journal of the American Helicopter Society, 2004, 49(2): 149-159. doi: 10.4050/JAHS.49.149
  • 加载中
图(13)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  59
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 录用日期:  2021-10-18
  • 网络出版日期:  2021-11-15
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答