-
摘要:
针对理想复飞轨迹已知条件下的舰载机自动复飞控制问题,提出一种基于偏差模型的动态面控制(DM-DSC)算法。基于Radau伪谱法给出了舰载机着舰的最优复飞轨迹;根据得到的最优复飞轨迹及其所对应的控制方案,分别给出了速度子系统和高度子系统的偏差控制模型和反演(Backstepping)控制器,并通过引入动态面结构来获得虚拟控制量的微分信号,避免了Backstepping控制律求解过程中的“微分膨胀”问题;考虑到气动参数的不确定性及舰尾流场的干扰,采用线性扩张状态观测器(LESO)对控制模型中的干扰项进行估计和补偿,并设计抗饱和辅助系统来抑制控制饱和的不利影响;最后,基于Lyapunov方法证明闭环系统信号的有界性。仿真结果表明:所提算法具有良好的控制性能。
Abstract:In this paper, a deviation model dynamic surface control algorithm (DM-DSC) is designed for automatic wave-off control of carrier aircraft when the optimal wave-off trajectory is available. Firstly, the optimal wave-off trajectory is given based on Radau pseudospectral method. Furthermore, according to the optimal wave-off trajectory and the corresponding control scheme, the deviation control models and Backstepping controllers of the velocity subsystem and altitude subsystem are given respectively. Then the dynamic surface structure is introduced to obtain the differential signal of the virtual control variable, and at the same time, the “differential expansion” problem in Backstepping control is avoided. Then, in order to acquire the differential signal of the virtual control variable and simultaneously avoid the "differential expansion" problem in Backstepping control, the dynamic surface structure is introduced. Considering the uncertainty of aerodynamic parameters and the disturbance of carrier air wake, the linear extended state observer (LESO) is used to estimate and compensate for the disturbance in the control model, and the anti-saturation auxiliary structure is introduced to suppress the influence of control saturation on the controller performance. Finally, the boundedness of the closed-loop system is proved based on the Lyapunov method. The comparative simulation results demonstrate that the DM-DSC algorithm has good control performance.
-
Key words:
- carrier aircraft /
- wave-off /
- Backstepping /
- dynamic surface control /
- disturbance observer /
- anti-saturation control
-
表 1 舰载机状态/控制变量的容许范围
Table 1. Admissible ranges of state and control variables
状态/控制变量 $\alpha $/(°) $q$ ${\delta _{{P} } }$ $ {\delta _{\text{e}}} $/(°) $ {\dot \delta _{\text{e}}} $/((°)·s−1) 容许取值范围 [1, 20] [−1, 1] [0, 1] [−24, 10.5] [−40, 40] -
[1] 焦晓辉, 陈胜杰, 王晓江. 舰载机复飞决策研究[J]. 航空科学技术, 2016, 27(8): 41-46.JIAO X H, CHEN S J, WANG X J. Research on wave-off decision of carrier-based aircraft[J]. Aeronautical Science & Technology, 2016, 27(8): 41-46(in Chinese). [2] 沈宏良, 龚正. 舰载飞机复飞决策与操纵研究[J]. 飞行力学, 2008, 26(5): 5-9.SHEN H L, GONG Z. Research on wave-off decision and control for carrier aircraft[J]. Flight Dynamics, 2008, 26(5): 5-9(in Chinese). [3] 焦鑫, 江驹, 王新华, 等. 舰载机综合复飞决策研究[J]. 飞行力学, 2012, 30(5): 405-409.JIAO X, JIANG J, WANG X H, et al. Research on comprehensive wave-off decision of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(5): 405-409(in Chinese). [4] 曲志刚. 基于小扰动动力学模型的舰载机复飞决策系统研究[J]. 青岛大学学报, 2010, 23(4): 52-56.QU Z G. Wave-off decision system based on small disturbance dynamics model[J]. Journal of Qingdao University, 2010, 23(4): 52-56(in Chinese). [5] 王宝宝, 龚华军, 王新华, 等. 舰载机智能复飞决策技术研究[J]. 飞行力学, 2010, 28(2): 42-45.WANG B B, GONG H J, WANG X H, et al. Study on intelligent wave-off decision techniques of carrier aircraft[J]. Flight Dynamics, 2010, 28(2): 42-45(in Chinese). [6] 杜洁. 舰载机复飞决策及操纵策略研究[D]. 南京: 南京航空航天大学, 2015: 39-47.DU J. Research on wave-off decision and manipulation strategy of carrier-based aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-47(in Chinese). [7] HU Q L, MENG Y, WANG C L, et al. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities[J]. Aerospace Science and Technology, 2018, 73: 289-299. doi: 10.1016/j.ast.2017.12.001 [8] 路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11): 324737.LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 324737(in Chinese). [9] YU C J, JIANG J, ZHEN Z Y, et al. Adaptive backstepping control for air-breathing hypersonic vehicle subject to mismatched uncertainties[J]. Aerospace Science and Technology, 2020, 107: 106244. doi: 10.1016/j.ast.2020.106244 [10] ZHANG S, WANG Q, DONG C Y. A novel adaptive dynamic surface control scheme of hypersonic flight vehicles with thrust and actuator constraints[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1362-1374. doi: 10.1177/0142331217690223 [11] DONG C Y, LIU Y, WANG Q. Barrier lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints[J]. ISA Transactions, 2020, 96: 163-176. doi: 10.1016/j.isatra.2019.06.011 [12] 王肖, 郭杰, 唐胜景, 等. 吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J]. 航空学报, 2017, 38(3): 320287.WANG X, GUO J, TANG S J, et al. Robust nonsingular terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 320287(in Chinese). [13] ZHANG X Y, ZONG Q, DOU L Q, et al. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle[J]. Journal of the Franklin Institute, 2020, 357(13): 8543-8565. doi: 10.1016/j.jfranklin.2020.05.017 [14] LIANG S, XU B, REN J R. Kalman-filter-based robust control for hypersonic flight vehicle with measurement noises[J]. Aerospace Science and Technology, 2021, 112: 106566. doi: 10.1016/j.ast.2021.106566 [15] AN H, WANG C H, FIDAN B. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle[J]. Acta Astronautica, 2017, 139: 111-121. doi: 10.1016/j.actaastro.2017.06.026 [16] HE N B, GAO Q, GUTIERREZ H, et al. Robust adaptive dynamic surface control for hypersonic vehicles[J]. Nonlinear Dynamics, 2018, 93(3): 1109-1120. doi: 10.1007/s11071-018-4248-4 [17] 路遥, 董朝阳, 王青. 高超声速飞行器自适应反步控制器设计[J]. 航空学报, 2015, 36(3): 970-978.LU Y, DONG C Y, WANG Q. Adaptive backstepping controller design for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 970-978(in Chinese). [18] LEE S, KIM Y, LEE Y, et al. Robust-backstepping missile autopilot design considering time-varying parameters and uncertainty[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4269-4287. doi: 10.1109/TAES.2020.2990819 [19] 刘敏, 徐世杰, 韩潮. 挠性航天器的退步直接自适应姿态跟踪控制[J]. 航空学报, 2012, 33(9): 1697-1705.LIU M, XU S J, HAN C. Direct adaptive attitude tracking control of flexible spacecraft based on backstepping method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1697-1705(in Chinese). [20] LIAN B H, BANG H. Momentum transfer-based attitude control of spacecraft with backstepping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 453-463. doi: 10.1109/TAES.2006.1642563 [21] FAN Y G, LUTZE F H, CLIFF E M. Time-optimal lateral maneuvers of an aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1106-1112. doi: 10.2514/3.21511 [22] GARG D, PATTERSON M, HAGER W W, et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods[J]. Automatica, 2010, 46(11): 1843-1851. doi: 10.1016/j.automatica.2010.06.048 [23] 蔡伟伟. 空天飞行器轨迹规划与控制研究[D]. 长沙: 国防科学技术大学, 2015: 20-35.CAI W W. Trajectory planning and control for aerospace vehicles[D]. Changsha: National University of Defense Technology, 2015: 20-35(in Chinese). [24] LU Y. Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle[J]. Chinese Journal of Aeronautics, 2021, 34(2): 396-406. doi: 10.1016/j.cja.2020.09.053 [25] 董朝阳, 路遥, 王青. 高超声速飞行器指令滤波反演控制[J]. 宇航学报, 2016, 37(8): 957-963.DONG C Y, LU Y, WANG Q. Command filtered backstepping control for hypersonic vehicle[J]. Journal of Astronautics, 2016, 37(8): 957-963(in Chinese). [26] 程春华, 胡云安, 吴进华. 非仿射纯反馈非线性系统的自抗扰控制[J]. 自动化学报, 2014, 40(7): 1528-1536.CHENG C H, HU Y A, WU J H. Auto disturbance controller of non-affine nonlinear pure feedback systems[J]. Acta Automatica Sinica, 2014, 40(7): 1528-1536(in Chinese). [27] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2): 473-483.WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 473-483(in Chinese). [28] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580.CHEN Z Q, SUN M W, YANG R G. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica, 2013, 39(5): 574-580(in Chinese). [29] ZHENG Q, GAOL L Q, GAO Z Q. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]// 2007 46th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 3501-3506. [30] 张智, 朱齐丹, 张雯. 航母舰载机全自动引导着舰技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 44-53.ZHANG Z, ZHU Q D, ZHANG W. Automatic guided landing technology for carrier aircraft[M]. Harbin: Harbin Engineering University Press, 2016: 44-53(in Chinese). [31] 程志强, 朱纪洪, 袁夏明, 等. 推力矢量垂直短距飞机轨迹优化与控制[J]. 控制理论与应用, 2020, 37(1): 38-46. doi: 10.7641/CTA.2019.80515CHENG Z Q, ZHU J H, YUAN X M, et al. Trajectory optimization and control design for transition of thrust-vectored vertical and/or short take-off and landing aircraft[J]. Control Theory & Applications, 2020, 37(1): 38-46(in Chinese). doi: 10.7641/CTA.2019.80515