留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液滴参数检测的涡街湿气过读预测模型

李金霞 丁红兵 王超 孙宏军

李金霞,丁红兵,王超,等. 基于液滴参数检测的涡街湿气过读预测模型[J]. 北京航空航天大学学报,2023,49(4):815-824 doi: 10.13700/j.bh.1001-5965.2021.0364
引用本文: 李金霞,丁红兵,王超,等. 基于液滴参数检测的涡街湿气过读预测模型[J]. 北京航空航天大学学报,2023,49(4):815-824 doi: 10.13700/j.bh.1001-5965.2021.0364
LI J X,DING H B,WANG C,et al. A new overreading model for wet gas vortex metering considering entrained droplet flow parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):815-824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0364
Citation: LI J X,DING H B,WANG C,et al. A new overreading model for wet gas vortex metering considering entrained droplet flow parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):815-824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0364

基于液滴参数检测的涡街湿气过读预测模型

doi: 10.13700/j.bh.1001-5965.2021.0364
基金项目: 国家自然科学基金(51876143,61873184,61627803) ;中央高校基本科研业务费项目中国民航大学专项(3122021036)
详细信息
    通讯作者:

    E-mail:hbding@tju.edu.cn

  • 中图分类号: TP212.9

A new overreading model for wet gas vortex metering considering entrained droplet flow parameters

Funds: National Natural Science Foundation of China (51876143,61873184,61627803); The Fundamental Research Funds for the Central Universities of Civil Aviation University of China (3122021036)
More Information
  • 摘要:

    为提高两相涡街湿气测量精度,针对传统涡街过读公式预测精度差、适用范围受限问题,提出基于夹带液滴参数(夹带率和粒径)的涡街过读预测模型。为进行不同夹带液滴工况的实验研究,建立基于雾化混合的可调压环雾状流实验装置,并建立光学图像法测量系统,获得液滴直径及其分布信息。结合环雾状流型及涡街过读机制,考虑液滴-液膜传质和液滴-旋涡耦合作用,提出影响涡街过读的无量纲尺度参数。建立基于液相加载量、韦伯数和斯托克斯数的涡街过读预测模型,将夹带液滴参数和载气参数(密度和速度)的影响考虑在内,理论上可拓展公式适用范围。最后,评估现有过读关联式的预测性能,并结合实验和模型假设中夹带液滴参数的差异进行详细分析,进一步确认了夹带率和粒径对涡街过读特性的重要影响。结果表明:所提模型在不同液滴夹带条件下都给出了很好的预测,相对偏差在±1.0%以内,预测精度和可拓展性较其他公式有了较大提高。

     

  • 图 1  湿气环雾状中的涡街现象

    Figure 1.  Vortex street in annular mist flow of wet gas

    图 2  基于雾化混合的可调压环雾状流实验装置

    Figure 2.  Experimental device for pressure-adjustable annular mist flow loop based on atomizing mixing

    图 3  基于光学图像法的粒度测量系统

    Figure 3.  Diagram of particle size measurement system based on optical imaging method

    图 4  液滴原始图像及短曝光测径原理

    Figure 4.  Original droplet image and principle of short exposure for diameter measurement

    图 5  涡街过读随液相质量加载量的变化

    Figure 5.  Meter overreading versus liquid mass loading

    图 6  液滴索泰尔直径随液相体积流量的变化

    Figure 6.  Droplet SMD versus liquid volume flowrate

    图 7  涡街过读随斯托克斯数的变化

    Figure 7.  Meter overreading versus stokes number

    图 8  涡街过读预测结果

    Figure 8.  Predicted results of meter overreading

    图 9  不同过读公式的预测结果与实验结果

    Figure 9.  Predicted and experimental results of different meter overreading correlations

    表  1  环雾状流实验装置主要参数

    Table  1.   Main parameters of annular mist flow loop

    参数范围
    操作压力/kPa100~700
    操作温度/℃0~80
    气相标准表体积流量/(m3·h−1)9~25
    计量泵测量液相流量/(kg·h−1)1.7~17
    雾化喷嘴压力/MPa0~9.5
     注:参数项测量精度相对误差分别为0.1%,0.5%,1.0%,2.0%,1.0%。
    下载: 导出CSV

    表  2  测量系统主要参数

    Table  2.   Main parameters of measurement system

    系统组成参数取值
    相机分辨率1280×1024
    像素/(μm×μm)3.45 ×3.45
    曝光时间/μs1~10
    帧率/fps10
    远心镜头工作距离/cm9.2~12
    放大倍率0.5~4.5
    控制器功率/W50
    输出电压/V5
    光源波长/nm532 (绿光)
     注:fps为帧/s。
    下载: 导出CSV

    表  3  不同工况下的液滴粒径及过读特性 (PJ6)

    Table  3.   Droplet SMD and meter overreading under different conditions (PJ6)

    载气
    工况
    P/
    kPa
    Usg/
    (m·s−1)
    Ql/
    (mL·s−1)
    dp/
    μm
    fVS/
    Hz
    OR
    250 kPa,
    18 m3/h
    246.8 29.7 0.39 18.0 1714.7 1.0110
    245.6 30.0 0.64 16.6 1744.7 1.0184
    243.7 30.7 0.77 16.1 1793.4 1.0216
    233.2 30.3 0.92 15.1 1779.6 1.0274
    247.3 29.2 0.99 14.6 1719.0 1.0288
    247.8 29.6 1.04 14.3 1740.8 1.0302
    250 kPa,
    24 m3/h
    249.4 40.4 0.36 17.5 2273.1 1.0105
    250.6 40.2 0.61 16.3 2276.8 1.0181
    252.2 40.0 0.79 15.8 2277.7 1.0233
    252.7 39.7 0.93 14.8 2272.9 1.0276
    255.7 39.6 1.01 14.5 2270.9 1.0299
    255.4 39.5 1.07 14.0 2268.5 1.0317
    350 kPa,
    18 m3/h
    358.1 29.4 0.38 20.1 1696.9 1.0128
    354.1 29.2 0.61 18.1 1697.1 1.0184
    347.5 30.0 0.78 16.8 1754.4 1.0263
    345.8 29.9 0.93 16.5 1761.4 1.0320
    352.1 29.6 1.03 15.7 1748.1 1.0345
    345.5 29.9 1.05 15.5 1767.1 1.0359
    下载: 导出CSV

    表  4  不同工况下的液滴粒径及过读特性 (PJ8)

    Table  4.   Droplet SMD and meter overreading under different conditions (PJ8)

    载气
    工况
    P/
    kPa
    Usg/
    (m·s−1)
    Ql/
    (mL·s−1)
    dp/
    μm
    fVS/
    Hz
    OR
    250 kPa,
    18 m3/h
    253.8 30.6 0.46 36.1 1761.7 1.0082
    262.5 30.2 0.93 31.2 1754.5 1.0167
    257.0 30.0 1.42 25.3 1759.9 1.0262
    253.4 30.3 1.85 24.2 1790.6 1.0344
    252.8 30.4 2.23 21.5 1809.2 1.0413
    248.6 29.9 2.58 20.9 1794.9 1.0494
    267.4 29.4 2.89 19.6 1770.2 1.0526
    258.4 30.4 3.17 19.2 1836.6 1.0577
    250 kPa,
    24 m3/h
    255.6 40.6 0.53 30.9 2285.0 1.0103
    259.6 40.4 1.01 22.9 2295.4 1.0200
    261.4 39.9 1.46 21.6 2286.3 1.0288
    257.2 40.3 1.87 20.9 2328.1 1.0374
    262.9 40.4 2.23 20.6 2345.2 1.0434
    256.3 40.6 2.57 19.9 2373.0 1.0512
    260.2 40.7 2.84 19.3 2389.0 1.0558
    250.3 40.7 3.13 19.0 2409.1 1.0639
    350 kPa,
    18 m3/h
    352.9 29.7 0.48 39.5 1708.9 1.0087
    359.7 30.1 1.02 34.4 1746.2 1.0183
    348.3 30.3 1.44 28.1 1771.3 1.0265
    355.7 30.1 1.83 25.6 1773.3 1.0330
    358.6 30.1 2.23 23.1 1785.7 1.0397
    350.4 30.2 2.55 22.4 1801.7 1.0468
    347.8 29.5 2.86 20.5 1771.1 1.0537
    350.9 30.1 3.13 20.0 1815.7 1.0572
    下载: 导出CSV

    表  5  不同工况下的液滴粒径及过读特性 (PJ10)

    Table  5.   Droplet SMD and meter overreading under different conditions (PJ10)

    载气
    工况
    P/
    kPa
    Usg/
    (m·s−1)
    Ql/
    (mL·s−1)
    dp/
    μm
    fVS/
    Hz
    OR
    250 kPa,
    18 m3/h
    246.0 29.9 2.00 58.0 1772.5 1.0385
    243.0 30.4 2.40 45.4 1818.7 1.0457
    250.5 30.4 2.93 36.8 1830.6 1.0542
    255.6 30.2 3.36 34.0 1832.7 1.0614
    255.7 30.0 3.77 32.8 1833.8 1.0693
    244.6 29.9 4.21 28.2 1848.1 1.0811
    246.6 29.1 4.65 26.3 1818.2 1.0917
    250 kPa,
    24 m3/h
    254.7 40.8 2.01 46.5 2363.1 1.0416
    255.5 39.9 2.46 38.4 2336.8 1.0519
    258.5 40.1 2.96 31.2 2368.8 1.0617
    247.1 40.5 3.87 27.9 2443.7 1.0838
    249.8 39.9 4.33 24.8 2428.3 1.0939
    350 kPa,
    18 m3/h
    344.8 29.9 2.09 61.1 1763.7 1.0361
    357.5 29.4 2.52 52.3 1749.1 1.0429
    351.5 30.2 3.01 40.5 1810.2 1.0507
    360.1 29.6 3.43 38.6 1783.4 1.0577
    358.9 29.5 3.88 34.2 1791.4 1.0658
    359.8 29.3 4.32 31.3 1794.9 1.0736
    362.8 29.3 4.72 29.1 1802.1 1.0796
    下载: 导出CSV

    表  6  涡街流量计在湿气测量中的过读公式及实验条件

    Table  6.   Vortex meter overreading correlations in wet gas and their experimental conditions

    公式来源工况压力/MPa介质混合方式管径/mm液相加载量/%过读公式校正精度/%
    Hussein和Owen [16]0.4
    0.6
    过热蒸汽、水雾化喷嘴500 ~ 19$ {\left( {1{\text{ + }}\phi } \right)^{0.5}} $2
    Hall和Steven [18]1.2
    4.8
    7.8
    天然气、
    癸烷
    引射器1000 ~ 56$1{\text{ + 1} }{\text{.14} }X_{ {\text{LM} } } ^{0.84}$2
    贾云飞和孔德仁[19]0.1空气、水引射器500 ~ 75$1 + \dfrac{1}{3}{\beta _{\rm{l}}}\dfrac{ { {\rho _{\rm{l}}} } }{ { {\rho _{\rm{g}}} } }$10
    Stewart等 [20]1.5
    3.0
    6.0
    氮、煤油引射器1000 ~ 60$\left\{ \begin{array}{l} 1\text{+}2.59{X}_{\text{LM} },P=1.5\;\text{MP}\text{a}\\ 1\text{+}1.68{X}_{\text{LM} },P=3.0\;\text{MPa}\\ 1\text{+}1.22{X}_{\text{LM} },P=6.0\;\text{MPa}\end{array} \right.$5
    本文所提
    公式
    0.25
    0.35
    空气、水雾化喷嘴150 ~ 30$1 + 0.003\;9We_{\rm{g}}^{0.540\;7}{\phi ^{0.839\;8} }{\kern 1pt} {S t_L}^{ - 0.057\;1}$1
    下载: 导出CSV
  • [1] 盛碧霞, 冀海峰, 王保良, 等. 基于新型C4D的小管道气液两相流流型辨识方法[J]. 北京航空航天大学学报, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063

    SHENG B X, JI H F, WANG B L, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0063
    [2] 宋军辉, 宋保银, 张钊, 等. 逆载对管道内汽水两相流临界热流密度的影响[J]. 北京航空航天大学学报, 2017, 43(4): 842-848. doi: 10.13700/j.bh.1001-5965.2016.0331

    SONG J H, SONG B Y, ZHANG Z, et al. Effect of inverse load on critical heat flux of steam-water two-phase flow in a tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 842-848(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0331
    [3] BRIL J P, ARIRACHAKARAN S J. State of the art in multiphase flow[J]. Journal of Petroleum Technology, 1992, 44(5): 538-541. doi: 10.2118/23835-PA
    [4] OSHINOWO T, CHARLES M E. Vertical two-phase flow: Part I. Flow pattern correlations[J]. The Canadian Journal of Chemical Engineering, 1974, 52(1): 25-35. doi: 10.1002/cjce.5450520105
    [5] MEHDIZADEH P, MARRELLI J, TING V C. Wet gas metering: Trends in applications and technical developments[C]//SPE Annual Technical Conference and Exhibition. San Antordo: Society of Petroleum Engineers, 2002: 1-14.
    [6] STEVEN R. Wet gas metering[D]. Scotland: University of Strathclyde, 2001.
    [7] LI J X, WANG C, DING H B, et al. Online measurement of wet gas by modelling frequency and amplitude characteristics of a vortex flowmeter[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3666-3678.
    [8] LI J X, WANG C, DING H B, et al. EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics in mist annular flow of wet gas[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(5): 1150-1160. doi: 10.1109/TIM.2018.2790598
    [9] LI J X, WANG C, DING H B. Characteristics of vortex flowmeter in vapor-liquid mist flow[C]//International Instrumentation and Measurement Technology Conference. Houston: IEEE Instrumentation and Measurement Society, 2018: 1-6.
    [10] WANG C, ZHANG Z X, DING H B, et al. Measurement property of vortex flowmeter in wet gas flow using mist flow apparat[C]// International Instrumentation and Measurement Technology Conference. Houston: IEEE Instrumentation and Measurement Society, 2018: 1-6.
    [11] SUN H J, LUO Y K, DING H B, et al. Experimental investigation on atomization properties of impaction-pin nozzle using imaging method analysis[J]. Experimental Thermal and Fluid Science, 2021, 122: 110322. doi: 10.1016/j.expthermflusci.2020.110322
    [12] WANG C, DING H B, WANG H. Thermodynamic model and dynamic temperature compensation positive-pressure-based sonic nozzle gas flow standard[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(5): 1154-1165. doi: 10.1109/TIM.2012.2234599
    [13] YANG Y, CHUNG J N, TROUTT T R, et al. The effects of particles on the stability of a two-phase wake flow[J]. International Journal of Multiphase Flow, 1993, 19(1): 137-149. doi: 10.1016/0301-9322(93)90029-T
    [14] SAWANT P, ISHIII M, MORI M. Droplet entrainment correlation in vertical upward co-current annular two-phase flow[J]. Nuclear Engineering and Design, 2008, 238(6): 1342-1352. doi: 10.1016/j.nucengdes.2007.10.005
    [15] LI J X, WANG C, DING H B, et al. A new overreading model for wet gas vortex metering based on vorticity transport mechanism[J]. Measurement, 2020, 162: 107884. doi: 10.1016/j.measurement.2020.107884
    [16] HUSSEIN I B, OWEN I. Calibration of flowmeters in superheated and wet steam[J]. Flow Measurement and Instrumentation, 1991, 2(4): 209-215. doi: 10.1016/0955-5986(91)90003-A
    [17] PAN L, HANRATTY T J. Correlation of entrainment for annular flow in vertical pipes[J]. International Journal of Multiphase Flow, 2002, 28(3): 363-384. doi: 10.1016/S0301-9322(01)00073-8
    [18] HALL A, STEVEN R. A discussion on vortex meter technologies with wet gas flows[C]// Proceedings of 7th South East Asia Hydrocarbon Flow Measurement Workshop. Kuala Lumpur: TUV National Engineering Laboratory, 2008: 1-20.
    [19] 贾云飞, 孔德仁. 基于波理论的涡街流量计雾状流测量模型[J]. 化工学报, 2009, 60(3): 601-607. doi: 10.3321/j.issn:0438-1157.2009.03.010

    JIA Y F, KONG D R. Fog two-phase flow correlation for vortex flow meter based on theory of vortex street wave[J]. CIESC Journal, 2009, 60(3): 601-607(in Chinese). doi: 10.3321/j.issn:0438-1157.2009.03.010
    [20] STEWART D G, HODGES D, BROWN G J. Recent research results in wet gas flow[C]//Proceedings of South East Asia Hydrocarbon Flow Measurement Workshop. Kuala Lumpur: TUV National Engineering Laboratory, 2004: 1-13.
    [21] BURGER M, SCHMEHL R, KOCH R, et al. DNS of droplet-vortex interaction with a Karman vortex street[J]. International Journal of Heat and Fluid Flow, 2006, 27(2): 81-191.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  57
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 录用日期:  2021-08-20
  • 网络出版日期:  2021-09-03
  • 整期出版日期:  2023-04-30

目录

    /

    返回文章
    返回
    常见问答