-
摘要:
为了研究新型战斗机布局在Herbst机动中的非指令摇滚运动问题,研制了模拟Herbst机动运动的风洞试验装置,发展了运动/流动同步测量技术;借助试验装置,研究了尖侧缘机身布局在Herbst机动中的摇滚运动形态,找到了摇滚运动产生的主要阶段,分析了运动参数对摇滚运动的影响规律。结果表明:Herbst机动中的摇滚运动主要来自于俯仰拉起阶段,圆锥运动阶段对摇滚运动基本没有影响;在俯仰拉起阶段,摇滚运动随拉起速度可分为准静态区、过渡区和类正弦区;在快速拉起的类正弦区,当拉起减缩频率为0.01时,拉起中的摇滚运动曲线在俯仰角50°之前基本重合,在俯仰角50°之后较为分散,在一定的俯仰角范围内,拉起减缩频率可作为尖侧缘机身布局拉起摇滚运动的无量纲参数。
Abstract:A wind tunnel device simulating Herbst maneuver and the related motion/flow synchronous measurement technology are developed. By the device, the roll oscillation of the chined-body configuration undergoing the Herbst maneuver is studied. The device is used to study the roll oscillation of the chined-body configuration during the Herbst maneuver. The main stage form the rolling motion is revealed and the influence of motion parameters on the rolling motion is analyzed. Results show that the roll oscillation in the Herbst maneuver mainly comes from the pitch-up stage, and the conical motion stage has little effect on the rolling motion. In the pitch-up stage, the rolling motion can be divided into the quasi-static region, transition region and sine-like region. As the reduced pitch rate is 0.01, the curves of the rolling motions undergoing pitch up coincide each other before the pitch angle of 50°, and after that pitch angle the curves are dispersed. The reduced pitch rate can be used as a dimensionless parameter for the rolling motion of the chined-forebody configuration undergoing pitch up within a certain range of pitch angle. The rolling motion of the chined-forebody configuration undergoing pitch up within a specific range of pitch angle can be described by the reduced pitch rate, which can be employed as a dimensionless parameter.
-
Key words:
- Herbst maneuver /
- wing rock /
- chined-body configuration /
- wind tunnel tests /
- reduced pitch rate
-
图 5 Herbst机动中俯仰角
$\theta $ 和圆锥运动角${\phi _{\text{c}}} $ 的时间历程($ \varLambda_{{\rm{CA}}} $ =70°,$\omega_{\rm{p}} $ =10(°)/s,$\omega_{\rm{c}} $ =100(°)/s)Figure 5. Time histories of pitch angle
$\theta $ and motion angle of coning${\phi _{\text{c}}} $ in Herbst maneuver ($ \varLambda_{{\rm{CA}}} $ =70°,$\omega_{\rm{p}} $ =10(°)/s,$\omega_{\rm{c}} $ =100(°)/s)表 1 Herbst机动的典型试验工况
Table 1. Typical test cases of Herbst maneuver
典型工况 ${\theta _{{\text{SP}}}}$/(°) ${\theta _{{\text{EP}}}}$/(°) ${\varLambda _{ {\text{CA} } } }$/(°) ${\phi _{{\text{SC}}}}$/(°) ${\phi _{{\text{EC}}}}$/(°) ${\theta _{{\text{BR}}}}$/(°) Herbst70 10 60 70 20 160 20 Herbst50 10 40 50 20 160 20 -
[1] ALCORN C, CROOM M, FRANCIS M. The X-31 experience: Aerodynamic impediments to post-stall agility[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995. [2] ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 aircraft: Advances in aircraft agility and performance[J]. Progress in Aerospace Sciences, 1996, 32(4): 377-413. [3] HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566. doi: 10.2514/3.44674 [4] HERBST W B. Dynamics of air combat[J]. Journal of Aircraft, 1983, 20(7): 594-598. doi: 10.2514/3.44916 [5] 张曙光, 高浩. X-31A飞机的设计特点和试飞情况[J]. 飞行力学, 1996, 14(3): 9-13. doi: 10.13645/j.cnki.f.d.1996.03.002ZHANG S G, GAO H. On design characteristics and flight test achievements of the X-31A aircraft[J]. Flight Dynamics, 1996, 14(3): 9-13(in Chinese). doi: 10.13645/j.cnki.f.d.1996.03.002 [6] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle-of-attack stability[J]. Journal of Aircraft, 1988, 25(7): 591-597. doi: 10.2514/3.45628 [7] ERICSSON L E, MENDENHALL M R, PERKINS S C. Review of forebody-induced wing rock[J]. Journal of Aircraft, 1996, 33(2): 253-259. doi: 10.2514/3.46931 [8] 孙海生, 姜裕标. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4): 32-35.SUN H S, JIANG Y B. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 32-35(in Chinese). [9] SHI W, DENG X Y, WANG Y K, et al. An experimental study on chaotic oscillation of a chined forebody configuration in roll[J]. Experiments in Fluids, 2015, 56(9): 175. doi: 10.1007/s00348-015-2048-x [10] SHI W, DENG X Y, WANG Y K, et al. Flow mechanism of self-induced reversed limit-cycle wing rock for a chined forebody configuration[J]. Modern Physics Letters B, 2015, 29(32): 1550204. doi: 10.1142/S0217984915502048 [11] DENG X Y, WANG G, CHEN X R, et al. A physical model of asymmetric vortices flow structure in regular state over slender body at high angle of attack[J]. Science in China Series E:Technological Sciences, 2003, 46(6): 561-573. [12] WANG B, DENG X Y, MA B F, et al. Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices[J]. Acta Mechanica Sinica, 2010, 26(5): 787-791. doi: 10.1007/s10409-010-0358-z [13] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47: 299-313. doi: 10.1016/j.ast.2015.10.003 [14] QUAST T, NELSON R, FISHER D. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock[C]//9th Applied Aerodynamics Conference. Reston: AIAA, 1991. [15] MA B F, WANG B, DENG X Y. Effects of Reynolds numbers on wing rock induced by forebody vortices[J]. AIAA Journal, 2017, 55(9): 2980-2991. doi: 10.2514/1.J055461 [16] CHEN X R, DENG X Y, WANG Y K, et al. Influence of nose perturbations on behaviors of asymmetric vortices over slender body[J]. Acta Mechanica Sinica, 2002, 18(6): 581-593. doi: 10.1007/BF02487960 [17] TIAN W, DENG X Y, WANG Y K, et al. Study on flow behavior and structure over chined fuselage at high angle of attack[J]. Science China Technological Sciences, 2010, 53(8): 2057-2067. [18] SHI W, DENG X Y, TIAN W, et al. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1016-1022. doi: 10.1016/j.cja.2015.06.020 [19] KHAN M J, AHMED A, OEHL D C. Response of a free-to-roll slender delta wings to pitching and plunging[J]. Journal of Aircraft, 2006, 43(1): 275-279. doi: 10.2514/1.14260 [20] TREGIDGO L, WANG Z, GURSUL I. Frequency lock-in phenomenon for self-sustained roll oscillations of rectangular wings undergoing a forced periodic pitching motion[J]. Physics of Fluids, 2012, 24(11): 117101. doi: 10.1063/1.4767468 [21] 徐思文, 邓学蓥, 王延奎. 攻角拉起时前体非对称涡诱导机翼摇滚运动[J]. 北京航空航天大学学报, 2015, 41(11): 2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707XU S W, DENG X Y, WANG Y K. Wing rock motion induced by forebody asymmetric vortices in pitch-up[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2078-2084(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0707 [22] GENG X, SHI Z W, CHENG K M, et al. A new hybrid mechanism for dynamic wind tunnel test of high maneuverable air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(10): 1964-1974. doi: 10.1177/0954410015620448 [23] DENG X Y, SHI W. The study of wing-rock motions of wing/body model with chined forebody and their flow mechanism[C]//Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. New York: ASME, 2014. [24] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7): 727-750. [25] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185-248. doi: 10.1016/S0376-0421(02)00088-X -