留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Herbst机动中的摇滚运动试验研究

李乾 王延奎 贾玉红

李乾,王延奎,贾玉红. Herbst机动中的摇滚运动试验研究[J]. 北京航空航天大学学报,2023,49(5):1083-1098 doi: 10.13700/j.bh.1001-5965.2021.0375
引用本文: 李乾,王延奎,贾玉红. Herbst机动中的摇滚运动试验研究[J]. 北京航空航天大学学报,2023,49(5):1083-1098 doi: 10.13700/j.bh.1001-5965.2021.0375
LI Q,WANG Y K,JIA Y H. Test study on wing rock in Herbst maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1083-1098 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0375
Citation: LI Q,WANG Y K,JIA Y H. Test study on wing rock in Herbst maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1083-1098 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0375

Herbst机动中的摇滚运动试验研究

doi: 10.13700/j.bh.1001-5965.2021.0375
基金项目: 国家自然科学基金(11972060,11721202)
详细信息
    通讯作者:

    E-mail:liqian_buaa@buaa.edu.cn

  • 中图分类号: V221.7

Test study on wing rock in Herbst maneuver

Funds: National Natural Science Foundation of China (11972060,11721202)
More Information
  • 摘要:

    为了研究新型战斗机布局在Herbst机动中的非指令摇滚运动问题,研制了模拟Herbst机动运动的风洞试验装置,发展了运动/流动同步测量技术;借助试验装置,研究了尖侧缘机身布局在Herbst机动中的摇滚运动形态,找到了摇滚运动产生的主要阶段,分析了运动参数对摇滚运动的影响规律。结果表明:Herbst机动中的摇滚运动主要来自于俯仰拉起阶段,圆锥运动阶段对摇滚运动基本没有影响;在俯仰拉起阶段,摇滚运动随拉起速度可分为准静态区、过渡区和类正弦区;在快速拉起的类正弦区,当拉起减缩频率为0.01时,拉起中的摇滚运动曲线在俯仰角50°之前基本重合,在俯仰角50°之后较为分散,在一定的俯仰角范围内,拉起减缩频率可作为尖侧缘机身布局拉起摇滚运动的无量纲参数。

     

  • 图 1  试验模型

    Figure 1.  Test model

    图 2  自由摇滚支杆示意图

    Figure 2.  Diagram of free-to-roll rig

    图 3  Herbst机动风洞试验装置实物图

    Figure 3.  Physical diagram of Herbst maneuver wind-tunnel test device

    图 4  Herbst试验装置与常规尾撑装置的试验结果

    Figure 4.  Test results of Herbst test device and conventional tail-sting support device

    图 5  Herbst机动中俯仰角 $\theta $ 和圆锥运动角 ${\phi _{\text{c}}} $ 的时间历程($ \varLambda_{{\rm{CA}}} $=70°,$\omega_{\rm{p}} $=10(°)/s,$\omega_{\rm{c}} $=100(°)/s)

    Figure 5.  Time histories of pitch angle $\theta $ and motion angle of coning ${\phi _{\text{c}}} $ in Herbst maneuver ($ \varLambda_{{\rm{CA}}} $=70°,$\omega_{\rm{p}} $=10(°)/s, $\omega_{\rm{c}} $=100(°)/s)

    图 6  Herbst机动的主要过程

    Figure 6.  Primary processes of Herbst maneuver

    图 7  慢速Herbst70机动中的摇滚运动($\omega_ {\rm{p}}$=1(°)/s,$\omega_ {\rm{c}} $=5(°)/s)

    Figure 7.  Roll oscillations in slow Herbst70 maneuver ($\omega_ {\rm{p}}$=1(°)/s,$\omega_ {\rm{c}} $=5(°)/s)

    图 8  慢速Herbst70机动中摇滚运动的相图

    Figure 8.  Phase plots of roll oscillations in slow Herbst70 maneuver

    图 9  快速Herbst70机动中的摇滚运动($\omega_ {\rm{p}}$=50(°)/s,$\omega_ {\rm{c}} $=100(°)/s)

    Figure 9.  Roll oscillations in fast Herbst70 maneuver ($\omega_ {\rm{p}}$=50(°)/s,$\omega_ {\rm{c}} $=100(°)/s)

    图 10  快速Herbst70机动中摇滚运动的相图

    Figure 10.  Phase plots of roll oscillations in fast Herbst70 maneuver

    图 11  固定俯仰角θ =70°的摇滚运动

    Figure 11.  Roll oscillations at fixed pitch angle of θ =70°

    图 12  Herbst50机动中的摇滚运动

    Figure 12.  Roll oscillations in Herbst50 maneuver

    图 13  单独圆锥运动中的摇滚运动

    Figure 13.  Roll oscillations in single coning motion

    图 14  圆锥运动速度对摇滚运动的影响

    Figure 14.  Effect of coning rate on roll oscillations

    图 15  圆锥运动中附加侧滑角βadd随轴向位置的变化

    Figure 15.  Variation of βadd with axial position in coning motion

    图 16  有效侧滑角βeff随滚转角的变化规律(θ=50°)

    Figure 16.  Variation of effective sideslip angle βeff with roll angle while θ is 50°

    图 17  不同固定俯仰角下的摇滚运动形态

    Figure 17.  Pattern of rolling oscillation at various fixed pitch angles

    图 18  固定俯仰角下摇滚运动时间历程

    Figure 18.  Time histories of roll oscillations at fixed pitch angles

    图 19  固定俯仰角下摇滚运动的相图

    Figure 19.  Phase plots of roll oscillations at fixed pitch angles

    图 20  固定俯仰角下摇滚运动的频谱

    Figure 20.  Spectra of roll oscillations at fixed pitch angles

    图 21  准静态区拉起中的摇滚运动

    Figure 21.  Roll oscillations in pitch up at quasi-static region

    图 22  拉起俯仰角段和固定俯仰角的运动对比

    Figure 22.  Comparison of roll oscillations between undergoing pitch-up angles and corresponding fixed pitch angles

    图 23  过渡区拉起中的摇滚运动

    Figure 23.  Roll oscillations in pitch up at transition region

    图 24  过渡区拉起中摇滚运动的周期数和运动频率

    Figure 24.  Number of periods and frequencies of roll oscillations undergoing pitch up at transition region

    图 25  类正弦区拉起中的摇滚运动

    Figure 25.  Roll oscillations undergoing pitch up at sine-like region

    图 26  类正弦区首次偏离的最大滚转角和对应俯仰角

    Figure 26.  The maximum firstly-deflected roll angle and related pitch angle at sine-like region

    图 27  ReD对快速拉起摇滚运动的影响(ωp = 30 (°)/s)

    Figure 27.  Effect of ReD on wing rock undergoing fast pitch-up (ωp = 30 (°)/s)

    图 28  减缩频率$\omega _{\text{p}}^ * $=0.01时的快速拉起摇滚运动

    Figure 28.  Wing rock in fast pitch-up at reduced pitch rate of 0.01

    表  1  Herbst机动的典型试验工况

    Table  1.   Typical test cases of Herbst maneuver

    典型工况${\theta _{{\text{SP}}}}$/(°)${\theta _{{\text{EP}}}}$/(°)${\varLambda _{ {\text{CA} } } }$/(°)${\phi _{{\text{SC}}}}$/(°)${\phi _{{\text{EC}}}}$/(°)${\theta _{{\text{BR}}}}$/(°)
    Herbst701060702016020
    Herbst501040502016020
    下载: 导出CSV
  • [1] ALCORN C, CROOM M, FRANCIS M. The X-31 experience: Aerodynamic impediments to post-stall agility[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
    [2] ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 aircraft: Advances in aircraft agility and performance[J]. Progress in Aerospace Sciences, 1996, 32(4): 377-413.
    [3] HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566. doi: 10.2514/3.44674
    [4] HERBST W B. Dynamics of air combat[J]. Journal of Aircraft, 1983, 20(7): 594-598. doi: 10.2514/3.44916
    [5] 张曙光, 高浩. X-31A飞机的设计特点和试飞情况[J]. 飞行力学, 1996, 14(3): 9-13. doi: 10.13645/j.cnki.f.d.1996.03.002

    ZHANG S G, GAO H. On design characteristics and flight test achievements of the X-31A aircraft[J]. Flight Dynamics, 1996, 14(3): 9-13(in Chinese). doi: 10.13645/j.cnki.f.d.1996.03.002
    [6] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle-of-attack stability[J]. Journal of Aircraft, 1988, 25(7): 591-597. doi: 10.2514/3.45628
    [7] ERICSSON L E, MENDENHALL M R, PERKINS S C. Review of forebody-induced wing rock[J]. Journal of Aircraft, 1996, 33(2): 253-259. doi: 10.2514/3.46931
    [8] 孙海生, 姜裕标. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4): 32-35.

    SUN H S, JIANG Y B. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 32-35(in Chinese).
    [9] SHI W, DENG X Y, WANG Y K, et al. An experimental study on chaotic oscillation of a chined forebody configuration in roll[J]. Experiments in Fluids, 2015, 56(9): 175. doi: 10.1007/s00348-015-2048-x
    [10] SHI W, DENG X Y, WANG Y K, et al. Flow mechanism of self-induced reversed limit-cycle wing rock for a chined forebody configuration[J]. Modern Physics Letters B, 2015, 29(32): 1550204. doi: 10.1142/S0217984915502048
    [11] DENG X Y, WANG G, CHEN X R, et al. A physical model of asymmetric vortices flow structure in regular state over slender body at high angle of attack[J]. Science in China Series E:Technological Sciences, 2003, 46(6): 561-573.
    [12] WANG B, DENG X Y, MA B F, et al. Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices[J]. Acta Mechanica Sinica, 2010, 26(5): 787-791. doi: 10.1007/s10409-010-0358-z
    [13] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47: 299-313. doi: 10.1016/j.ast.2015.10.003
    [14] QUAST T, NELSON R, FISHER D. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock[C]//9th Applied Aerodynamics Conference. Reston: AIAA, 1991.
    [15] MA B F, WANG B, DENG X Y. Effects of Reynolds numbers on wing rock induced by forebody vortices[J]. AIAA Journal, 2017, 55(9): 2980-2991. doi: 10.2514/1.J055461
    [16] CHEN X R, DENG X Y, WANG Y K, et al. Influence of nose perturbations on behaviors of asymmetric vortices over slender body[J]. Acta Mechanica Sinica, 2002, 18(6): 581-593. doi: 10.1007/BF02487960
    [17] TIAN W, DENG X Y, WANG Y K, et al. Study on flow behavior and structure over chined fuselage at high angle of attack[J]. Science China Technological Sciences, 2010, 53(8): 2057-2067.
    [18] SHI W, DENG X Y, TIAN W, et al. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1016-1022. doi: 10.1016/j.cja.2015.06.020
    [19] KHAN M J, AHMED A, OEHL D C. Response of a free-to-roll slender delta wings to pitching and plunging[J]. Journal of Aircraft, 2006, 43(1): 275-279. doi: 10.2514/1.14260
    [20] TREGIDGO L, WANG Z, GURSUL I. Frequency lock-in phenomenon for self-sustained roll oscillations of rectangular wings undergoing a forced periodic pitching motion[J]. Physics of Fluids, 2012, 24(11): 117101. doi: 10.1063/1.4767468
    [21] 徐思文, 邓学蓥, 王延奎. 攻角拉起时前体非对称涡诱导机翼摇滚运动[J]. 北京航空航天大学学报, 2015, 41(11): 2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707

    XU S W, DENG X Y, WANG Y K. Wing rock motion induced by forebody asymmetric vortices in pitch-up[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2078-2084(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0707
    [22] GENG X, SHI Z W, CHENG K M, et al. A new hybrid mechanism for dynamic wind tunnel test of high maneuverable air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(10): 1964-1974. doi: 10.1177/0954410015620448
    [23] DENG X Y, SHI W. The study of wing-rock motions of wing/body model with chined forebody and their flow mechanism[C]//Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. New York: ASME, 2014.
    [24] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7): 727-750.
    [25] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185-248. doi: 10.1016/S0376-0421(02)00088-X
  • 加载中
图(28) / 表(1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  83
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 录用日期:  2021-10-09
  • 网络出版日期:  2021-10-13
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答