留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主被动层析融合的碳烟火焰多参数场重建

高包海 齐宏 史景文 牛志田 任亚涛 何明键

高包海,齐宏,史景文,等. 基于主被动层析融合的碳烟火焰多参数场重建[J]. 北京航空航天大学学报,2023,49(5):1135-1147 doi: 10.13700/j.bh.1001-5965.2021.0386
引用本文: 高包海,齐宏,史景文,等. 基于主被动层析融合的碳烟火焰多参数场重建[J]. 北京航空航天大学学报,2023,49(5):1135-1147 doi: 10.13700/j.bh.1001-5965.2021.0386
GAO B H,QI H,SHI J W,et al. Multi-parameter reconstruction of soot flame based on active and passive tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1135-1147 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0386
Citation: GAO B H,QI H,SHI J W,et al. Multi-parameter reconstruction of soot flame based on active and passive tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1135-1147 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0386

基于主被动层析融合的碳烟火焰多参数场重建

doi: 10.13700/j.bh.1001-5965.2021.0386
基金项目: 国家自然科学基金(51976044);国家科技重大专项(2017-Ⅴ-0016-0069)
详细信息
    通讯作者:

    E-mail:qihong@hit.edu.cn

  • 中图分类号: V435+.12;K121

Multi-parameter reconstruction of soot flame based on active and passive tomography

Funds: National Natural Science Foundation of China (51976044); National Science and Technology Major Project (2017-Ⅴ-0016-0069)
More Information
  • 摘要:

    为克服实际工程应用中火焰辐射特性未知导致对火焰温度和辐射特性协同重建的低效率和低精度难题,结合主动激光层析吸收光谱和被动辐射成像技术,提出一种基于主被动层析融合的高温碳烟火焰多物理场协同重建的新方法。结合多谱段下激光层析透射测量信号和火焰自发辐射光场测量信号,根据火焰弥散介质辐射传输机理建立主被动层析的多场协同重建模型,对数值模拟高温碳烟火焰和耶鲁大学实验燃烧火焰的三维辐射物性场、温度场及气固两相燃烧产物组分浓度场的协同重建进行模拟研究,并对多种测量信号的随机误差进行误差传递分析。结果表明:当激光信噪比大于25 dB时,模拟火焰衰减系数场重建的相关系数接近1,重建的温度场与真值吻合较好;当激光信噪比大于30 dB时,实验火焰碳烟颗粒浓度场重建的相关系数接近1,温度场重建相关系数约为0.83;光场信号测量噪声对温度重建精度的影响比激光测量噪声显著,应尽可能保证激光与光场测量系统的标定精度。

     

  • 图 1  主动激光层析示意图

    Figure 1.  Schematic of active laser tomography

    图 2  高温碳烟火焰光场相机成像探测模型

    Figure 2.  Light field camera imaging detection model of high-temperature soot flame

    图 3  探测射线在火焰内的传输模型

    Figure 3.  Transmission model of detection ray in flame

    图 4  高温碳烟火焰多参数场协同重建流程

    Figure 4.  Schematic of multi-parameter collaborative reconstruction of high-temperature soot flame

    图 5  探测激光布置示意图

    Figure 5.  Schematic of detection laser arrangement

    图 6  不同激光噪声下衰减系数场重建结果

    Figure 6.  Reconstruction results of extinction coefficients under different laser noise

    图 7  不同激光噪声下温度场重建结果

    Figure 7.  Reconstruction results of temperatures under different laser noise

    图 8  不同激光和光场测量误差下温度场重建质量

    Figure 8.  Reconstruction quality of temperatures under different laser and light field measurement errors

    图 9  三种工况下碳烟颗粒浓度重建结果

    Figure 9.  Reconstruction result of soot particle concentration under three operating conditions

    图 10  三种工况下火焰温度重建结果

    Figure 10.  Reconstruction result of flame temperature under three operating conditions

    图 11  三种工况下火焰H2O体积分数场重建结果

    Figure 11.  Reconstruction result of H2O species concentration under three operating conditions

    图 12  三种工况下激光信号噪声对H2O体积分数场重建精度的影响

    Figure 12.  Influence of laser measurement signal error on reconstruction accuracy of H2O species concentration under three operating conditions

    图 13  主被动层析技术测量信号误差传递分析

    Figure 13.  Error transmission analysis of measurement signal by active and passive chromatography

    图 14  光场信号测量误差对重建质量的影响

    Figure 14.  Effect of light-field signal measurement error on reconstruction quality

    表  1  不同激光噪声下衰减系数场重建质量

    Table  1.   Reconstruction quality of extinction coefficient under different laser noise

    SNR / dBe
    150.9726
    200.9971
    250.9998
    301
    351
    下载: 导出CSV

    表  2  不同激光噪声下火焰碳烟颗粒体积分数场重建质量

    Table  2.   Reconstruction quality of soot flame particle concentration under different laser noise

    工况SNR / dBe 工况SNR / dBe
    工况115 0.9893 工况2301
    工况120 0.9988 工况2351
    工况125 0.9999 工况2401
    工况1301 工况315 0.9834
    工况1351 工况320 0.9983
    工况1401 工况325 0.9998
    工况215 0.9901 工况3301
    工况220 0.9987 工况3351
    工况225 0.9999 工况3401
    下载: 导出CSV

    表  3  不同激光噪声下火焰温度场重建质量

    Table  3.   Reconstruction quality of flame temperature under different laser noise

    工况SNR / dBe 工况SNR / dBe
    工况1150.7929 工况2300.8260
    工况1200.8121 工况2350.8412
    工况1250.8161 工况2400.8957
    工况1300.8289 工况3150.7440
    工况1350.8396 工况3200.7704
    工况1400.8677 工况3250.8004
    工况2150.7565 工况3300.8166
    工况2200.8058 工况3350.8344
    工况2250.8189 工况3400.9078
    下载: 导出CSV

    表  4  可见光激光信号噪声的误差传递

    Table  4.   Error propagation of visible laser signal noise

    参数场SNR/dBe
    碳烟浓度15 0.9893
    碳烟浓度20 0.9988
    碳烟浓度25 0.9999
    碳烟浓度301
    碳烟浓度351
    温度15 0.7929
    温度20 0.8121
    温度25 0.8161
    温度30 0.8289
    温度35 0.8396
    H2O浓度15 0.924
    H2O浓度20 0.9407
    H2O浓度25 0.9443
    H2O浓度30 0.9484
    H2O浓度35 0.954
    下载: 导出CSV
  • [1] EL-MAHALLAWY F, HABIK S E D. Fundamentals and technology of combustion[M]. Amsterdam: Elsevier, 2002: 1-75.
    [2] JAROSINSKI J, VEYSSIERE B. Combustion phenomena: Selected mechanisms of flame formation, propagation and extinctions[M]. Boca Raton: CRC Press, 2009: 1-12.
    [3] NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431.
    [4] 周怀春. 炉内火焰可视化检测原理与技术[M]. 北京: 科学出版社, 2005: 1-7.

    ZHOU H C. The principle and technology of visual inspection of flames in furnaces[M]. Beijing: Science Press, 2005: 1-7(in Chinese).
    [5] WEI Z, YAN L, LI Z, et al. 3-D reconstruction algorithm of flame based on inversion calculation of thermal radiation[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(12): 2808-2815. doi: 10.1109/TIM.2016.2611382
    [6] TEICHERT H, FERNHOLZ T, EBERT V. Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers[J]. Applied Optics, 2003, 42(12): 2043-2051. doi: 10.1364/AO.42.002043
    [7] 黄兴. 基于主被动光学探测的发光火焰多物理量场重建[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    HUANG X. Reconstruction of the multi-physical fields in luminous flame based on active and passive optical detection[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [8] 李可. 基于吸收光谱技术的燃烧场温度与浓度层析成像方法研究[D]. 南京: 东南大学, 2016.

    LI K. Study on tomography of temperature and concentration in combustion based on absorption spectrum technology[D]. Nanjing: Southeast University, 2016(in Chinese).
    [9] 周怀春, 炉内火焰可视化检测原理与技术[M]. 北京: 科学出版社, 2005: 1-12.

    ZHOU H C. Principle and technology of flame visualization detection in furnace[M]. Beijing: Science Press, 2005: 1-12(in Chinese).
    [10] CHILDS P, GREENWOOD J R, LONG C A. Review of temperature measurement[J]. Review of Scientific Instruments, 2000, 71(8): 2959-2978. doi: 10.1063/1.1305516
    [11] EHN A, ZHU J, LI X, et al. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering[J]. Applied Spectroscopy, 2017, 71(3): 341-366. doi: 10.1177/0003702817690161
    [12] LI T, LI S, YUAN Y, et al. Light field imaging analysis of flame radiative properties based on Monte Carlo method[J]. International Journal of Heat and Mass Transfer, 2018, 119: 303-311.
    [13] NIU C Y, QI H, HUANG X, et al. Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 44-57.
    [14] LI J, LIU G, YING Y, et al. On the treatment of lens optical center uncertainty in simultaneous reconstruction of flame temperature and soot volume fraction distributions by a CCD camera[J]. Optik, 2021, 241: 167238. doi: 10.1016/j.ijleo.2021.167238
    [15] KOHSE-HÖINGHAUS K, BARLOW R S, ALDÉN M, et al. Combustion at the focus: Laser diagnostics and control[J]. Proceedings of the Combustion Institute, 2005, 30(1): 89-123. doi: 10.1016/j.proci.2004.08.274
    [16] CHENG Q, ZHANG X Y, WANG Z C, et al. Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace[J]. Heat Transfer Engineering, 2013, 35(6-8): 770-779.
    [17] HANSON R K, FALCONE P K. Temperature measurement technique for high-temperature gases using a tunable diode laser[J]. Applied Optics, 1978, 17(16): 2477-2480.
    [18] DENNIS C N, SLABAUGH C D, BOXX I G, et al. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry[J]. Combustion and Flame, 2016, 173: 441-453. doi: 10.1016/j.combustflame.2016.02.033
    [19] CAI W, LI X, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050-7064. doi: 10.1364/OE.21.007050
    [20] WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science and Technology, 2013, 24(2): 024013. doi: 10.1088/0957-0233/24/2/024013
    [21] HOSSAIN M, LU G, YAN Y. Optical fiber imaging based tomographic reconstruction of burner flames[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(5): 1417-1425. doi: 10.1109/TIM.2012.2186477
    [22] ZHOU H C, LOU C, CHENG Q, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1699-1706. doi: 10.1016/j.proci.2004.08.090
    [23] WANG H J, HUANG Z F, WANG D D, et al. Measurements on flame temperature and its 3D distribution in a 660 MWe arch-fired coal combustion furnace by visible image processing and verification by using an infrared pyrometer[J]. Measurement Science and Technology, 2009, 20(11): 114006. doi: 10.1088/0957-0233/20/11/114006
    [24] 张海丹. 基于高光谱成像系统的火焰三维温度场和烟黑浓度场重建研究[D]. 杭州: 浙江大学, 2016.

    ZHANG H D. Three dimensional reconstruction of temperature and soot volume fraction distribution in flames based on hyperspectral imaging system[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [25] 谢正超. 基于高光谱成像的火焰三维温度场、烟黑浓度场和气体浓度场重建研究[D]. 杭州: 浙江大学, 2018.

    XIE Z C. Three dimensional reconstruction of temperature, soot volume fraction distribution and gas volume fraction distribution in flames based on hyperspectral imaging system[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [26] 柳华蔚. 基于高光谱成像技术的扩散火焰温度和颗粒物特性研究[D]. 北京: 清华大学, 2017.

    LIU H W. Research on the temperature and particle characteristic in diffusion flames using hyperspectral imaging technique[D]. Beijing: Tsinghua University, 2017(in Chinese).
    [27] LIU H, ZHOU H, XU C. A decomposition method for the simultaneous reconstruction of temperature and soot volume fraction distributions in axisymmetric flames[J]. Measurement Science and Technology, 2020, 31(11): 115202. doi: 10.1088/1361-6501/ab9dbf
    [28] CAI W W, WANG X L, YU T. Spatial-frequency encoded imaging of multangular and multispectral images[J]. The Review of Scientific Instruments, 2021, 92(1): 015111. doi: 10.1063/5.0025112
    [29] KELLY D L, PHILLIPS M A, THUROW B S, et al. A novel multi-band plenoptic pyrometer used for temperature measurements of strand burner plumes[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1-9.
    [30] JUN S, HOSSAIN M, CHUAN X, et al. A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature[J]. Optics Communications, 2017, 390: 7-15. doi: 10.1016/j.optcom.2016.12.056
    [31] SUN J, HOSSAIN M M, XU C L, et al. Investigation of flame radiation sampling and temperature measurement through light field camera[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1281-1296.
    [32] HUANG X, QI H, ZHANG X L, et al. Application of landweber method for three dimensional temperature field reconstruction based on the light-field imaging technique[J]. Journal of Heat Transfer, 2018, 140(8): 082701-082711. doi: 10.1115/1.4039305
    [33] SHI J W, QI H, YU Z Q, et al. Three-dimensional temperature reconstruction of diffusion flame from the light-field convolution imaging by the focused plenoptic camera[J]. Science China Technological Sciences, 2022, 65(2): 302-323.
    [34] Harvard University. The HITRAN database[DB/OL]. (2023-03-01)[2023-03-21].https://hitran.org/.
    [35] LIU H W, ZHENG S, ZHOU H C. Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 315-324. doi: 10.1109/TIM.2016.2631798
    [36] QI H, SHI J W, SU Y X, et al. Soot temperature measurement within 3D flame by light-field imaging based on wave optics theory[J]. Optics and Lasers in Engineering, 2020, 138: 106419.
    [37] SHI J W, QI H, ZHANG J Y, et al. Simultaneous measurement of flame temperature and species concentration distribution from nonlinear tomographic absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241: 106693.
    [38] Yale University. Yale doflow diffusion flames[DB/OL]. (2016-08-16) [2023-03-21]. http://guilford.eng.yale.edu/yalecoflowflames/.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  83
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 录用日期:  2021-07-23
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答