留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小卫星隐身构型设计及优化分析

秦远田 孙汗青 岳鑫

秦远田, 孙汗青, 岳鑫等 . 微小卫星隐身构型设计及优化分析[J]. 北京航空航天大学学报, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392
引用本文: 秦远田, 孙汗青, 岳鑫等 . 微小卫星隐身构型设计及优化分析[J]. 北京航空航天大学学报, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392
QIN Yuantian, SUN Hanqing, YUE Xinet al. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392(in Chinese)
Citation: QIN Yuantian, SUN Hanqing, YUE Xinet al. Stealthy configuration design and optimization analysis of microsatellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2102-2110. doi: 10.13700/j.bh.1001-5965.2021.0392(in Chinese)

微小卫星隐身构型设计及优化分析

doi: 10.13700/j.bh.1001-5965.2021.0392
详细信息
    通讯作者:

    秦远田, E-mail: qinyt@nuaa.edu.cn

  • 中图分类号: V423.4;TN973

Stealthy configuration design and optimization analysis of microsatellite

More Information
  • 摘要:

    为研究天巡一号微小卫星的电磁散射特性, 建立了具有隐身外形设计的微小卫星电磁计算模型。采用物理光学法(PO)对不同状态下的雷达散射截面(RCS)进行数值计算, 并与微波暗室的试验结果对比, 验证了PO的准确性。在此基础上, 着重分析了卫星RCS入射角、极化、频率、电尺寸响应特性和全姿态角空间RCS响应特性。参考天巡一号的隐身构型设计, 将天巡一号优化为对称的尖锥构型, 通过不断增加尖锥棱边数来优化构型, 得到具有更低RCS构型的橄榄体卫星。结果表明:天巡一号的隐身姿态可有效应对单站雷达威胁, 最佳隐身姿态下的空间RCS均值低于非隐身姿态4.89 dBsm;在S波段(3 GHz)下, 橄榄体卫星RCS算术均值和RCS幅值分别低于天巡一号4.77 dBsm和31.66 dBsm;在X波段(10 GHz)下, 橄榄体卫星RCS算术均值和RCS幅值分别低于天巡一号3.65 dBsm和43.97 dBsm。

     

  • 图 1  天巡一号的电磁计算模型

    Figure 1.  Electromagnetic calculation model of TX-1

    图 2  卫星电磁散射计算流程

    Figure 2.  Calculation process of satellite electromagnetic scattering

    图 3  数值仿真与试验结果对比

    Figure 3.  Comparison of numerical simulation and experimental results

    图 4  双站和单站RCS入射示意图

    Figure 4.  Schematic of bistatic and monostatic RCS incidence

    图 5  不同入射角下双站RCS分布特性

    Figure 5.  Characteristics of RCS distribution at bistatic with different incidence angles

    图 6  天巡一号RCS极化响应特性

    Figure 6.  RCS polarization response characteristics of TX-1

    图 7  天巡一号RCS频率响应特性

    Figure 7.  RCS frequency response characteristics of TX-1

    图 8  不同频率下RCS算术均值对比

    Figure 8.  Comparison of RCS average values at different frequencies

    图 9  天巡一号RCS电尺寸响应特性

    Figure 9.  RCS electric size response characteristics of TX-1

    图 10  天巡一号全姿态角空间RCS响应云图

    Figure 10.  TX-1 full attitude angle RCS response cloud

    图 11  天巡一号全姿态角空间RCS对比

    Figure 11.  TX-1 full attitude angle RCS comparison

    图 12  一种卫星构型优化方法

    Figure 12.  A satellite configuration optimization method

    图 13  两种卫星优化构型

    Figure 13.  Two satellite optimized configurations

    图 14  四种卫星构型3 GHz下RCS分布

    Figure 14.  RCS distribution of 4 kinds of satellite configurations at 3 GHz

    图 15  四种卫星构型10 GHz下RCS分布

    Figure 15.  RCS distribution of 4 kinds of satellite configurations at 10 GHz

    表  1  不同入射角下双站RCS算术均值和幅值

    Table  1.   Average value and amplitude of RCS at bistatic with different incidence angles

    入射角/(°) RCS算术均值/dBsm RCS幅值/dBsm
    0 7.03 11.4
    30 -5.82 12.9
    60 -7.84 13.9
    120 -7.84 13.9
    150 -5.19 13.0
    180 -9.85 11.3
    下载: 导出CSV

    表  2  四种卫星构型3 GHz下RCS算术均值和幅值对比

    Table  2.   Comparison of average and amplitude values of RCS for 4 kinds of satellite configuration at 3 GHz

    卫星构型 RCS算术均值/dBsm RCS幅值/dBsm
    天巡一号 -18.55 20.84
    构型A -18.67 -3.66
    构型B -19.82 -2.45
    橄榄体 -23.32 -10.82
    下载: 导出CSV

    表  3  四种卫星构型10 GHz下RCS算术均值和幅值对比

    Table  3.   Comparison of average and amplitude values of RCS for 4 kinds of satellite configuration at 10 GHz

    卫星构型 RCS算术均值/dBsm RCS幅值/dBsm
    天巡一号 -20.19 31.32
    构型A -21.05 -7.01
    构型B -22.30 -10.06
    橄榄体 -23.84 -12.65
    下载: 导出CSV
  • [1] 仇恒抗, 杨琴, 张智芳, 等. 微小卫星可展式刚挠结合板太阳电池阵设计[J]. 航天器工程, 2019, 28(3): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201903008.htm

    QIU H K, YANG Q, ZHANG Z F, et al. Design of expandable rigid flexible combined plate solar array for microsatellite[J]. Spacecraft Engineering, 2019, 28(3): 46-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201903008.htm
    [2] 尤政, 李冠华. 多学科设计优化方法在微纳卫星总体设计中的应用[J]. 中国航天, 2010(4): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201004012.htm

    YOU Z, LI G H. Application of multidisciplinary design optimization methods in the overall design of micro and nanosatellites[J]. China Aerospace, 2010(4): 36-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT201004012.htm
    [3] HUANG H. Concept study on satellite stealth[J]. Aerospace Electronic Warfare, 2010(6): 009.
    [4] 胡豪斌, 张翔, 廖文和, 等. 卫星隐身技术研究进展及发展趋势[J]. 国防科技大学学报, 2021, 43(3): 107-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202103014.htm

    HU H B, ZHANG X, LIAO W H, et al. Research progress and development trend of satellite stealth technology[J]. Journal of National University of Defense Technology, 2021, 43(3): 107-127(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ202103014.htm
    [5] 郑侃. 隐身微小卫星结构设计关键技术研究[D]. 南京: 南京航空航天大学, 2011.

    ZHENG K. Research on the key technology of stealthy microsa-tellite structure design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
    [6] 朱冬骏, 张占月, 赵程亮, 等. 一种实现光学隐身的卫星构型设计[J]. 空间控制技术与应用, 2017, 43(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201701010.htm

    ZHU D J, ZHANG Z Y, ZHAO C L, et al. A satellite configuration design to achieve optical stealth[J]. Space Control Technology and Applications, 2017, 43(1): 61-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201701010.htm
    [7] ZENG H T, ZHAO X W, SU Q, et al. Fast coating analysis and modeling for RCS reduction of aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1481-1487. doi: 10.1016/j.cja.2018.11.001
    [8] 刘战合, 苗楠, 王菁, 等. 不同气动布局轰炸机电磁隐身性能对比研究[J]. 科学技术与工程, 2020, 20(23): 9640-9646. doi: 10.3969/j.issn.1671-1815.2020.23.057

    LIU Z H, MIAO N, WANG J, et al. Comparative study on electromagnetic stealth performance of bombers with different aerodynamic layouts[J]. Science, Technology and Engineering, 2020, 20(23): 9640-9646(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.23.057
    [9] YI M X, WANG L F, HUANG J. Active cancellation analysis based on the radar detection probability[J]. Aerospace Science and Technology, 2015, 46: 273-281.
    [10] ZHOU Z Y, HUANG J, YI M X. Comprehensive optimization of aerodynamic noise and radar stealth for helicopter rotor based on Pareto solution[J]. Aerospace Science and Technology, 2018, 82-83: 607-619.
    [11] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    SANG J H. Stealth technology of flying vehicles[M]. Beijing: Aviation Industry Press, 2013(in Chinese).
    [12] 雷浩. 物理光学算法在电大尺寸目标电磁散射中的应用[D]. 西安: 西安电子科技大学, 2018.

    LEI H. Application of physical optics algorithms in electromagnetic scattering of electrically large targets[D]. Xi'an: Xidian University, 2018(in Chinese).
    [13] 吴安雯, 吴语茂, 杨杨, 等. 矩量法-物理光学混合算法计算多尺度复合目标电磁散射场[J]. 电波科学学报, 2019, 34(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201901014.htm

    WU A W, WU Y M, YANG Y, et al. The method of moments physical optics hybrid algorithm to calculate the electromagnetic scattering field of multiscale compound targets[J]. Chinese Journal of Radio Science, 2019, 34(1): 83-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201901014.htm
    [14] 张策. 物理光学法及其迭代加速算法在电磁散射中的应用[D]. 西安: 西安电子科技大学, 2019.

    ZHANG C. Application of physical optics method and its iterative acceleration algorithm in electromagnetic scattering[D]. Xi'an: Xidian University, 2019(in Chinese).
    [15] 岳奎志, 孙聪, 姬金祖. 双立尾对战斗机隐身特性的数值模拟[J]. 北京航空航天大学学报, 2014, 40(2): 160-165. https://bhxb.buaa.edu.cn/bhzk/article/id/12841

    YUE K Z, SUN C, JI J Z. Numerical simulation of the stealth characteristics of fighter jets with twin vertical tails[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 160-165(in Chinese). https://bhxb.buaa.edu.cn/bhzk/article/id/12841
    [16] 肖厚地, 刘龙斌, 吕明云. X型尾翼临近空间飞艇隐身特性仿真[J]. 北京航空航天大学学报, 2015, 41(1): 181-186. doi: 10.13700/j.bh.1001-5965.2014.0047

    XIAO H D, LIU L B, LV M Y. Simulation of stealth characteristics of X-tail airship near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 181-186(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0047
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  129
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-30
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答