留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

执飞任务中剩余脑力负荷量化评估模型

陆旭 王天博 庞丽萍 张成龙 毛晓东 王鑫

陆旭,王天博,庞丽萍,等. 执飞任务中剩余脑力负荷量化评估模型[J]. 北京航空航天大学学报,2023,49(5):1184-1192 doi: 10.13700/j.bh.1001-5965.2021.0407
引用本文: 陆旭,王天博,庞丽萍,等. 执飞任务中剩余脑力负荷量化评估模型[J]. 北京航空航天大学学报,2023,49(5):1184-1192 doi: 10.13700/j.bh.1001-5965.2021.0407
LU X,WANG T B,PANG L P,et al. Quantitative evaluation model of surplus mental workload in flight task[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1184-1192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0407
Citation: LU X,WANG T B,PANG L P,et al. Quantitative evaluation model of surplus mental workload in flight task[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1184-1192 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0407

执飞任务中剩余脑力负荷量化评估模型

doi: 10.13700/j.bh.1001-5965.2021.0407
基金项目: 辽宁省“兴辽英才计划”(XLYC1802092)
详细信息
    通讯作者:

    E-mail:boboxph@163.com

  • 中图分类号: [V7];R857.1

Quantitative evaluation model of surplus mental workload in flight task

Funds: Liao Ning Revitalization Talents Program (XLYC1802092)
More Information
  • 摘要:

    为评估飞行员在执飞任务中的脑力负荷,建立了基于任务需求负荷(TDL)和人员负荷能力(SWC)的脑力负荷量化评估模型,并据此提出剩余脑力负荷(SMWL)和脑力负荷占用率(ORMWL)的评估方法。采用信息熵法对信息显控界面上的信息量进行量化。基于多属性任务组(MATB)平台设计的执飞情境实验,对15名被试人员在不同任务水平下的脑力负荷状态进行评估,以验证所建模型的有效性。结果表明:SMWL模型方法的脑力负荷值与NASA-TLX主观量表值存在显著相关性。此外,任务水平的增加对人员的脑力负荷值有显著的U型影响。因此,通过所建模型,基于SMWL和ORMWL的概念,可以对飞行员执行飞行任务时的脑力负荷进行实时、定量的评估,为脑力负荷的量化提供了一种新的思路。

     

  • 图 1  脑力负荷同TDL和SWC的关系

    Figure 1.  MWL in relation to TDL and SWC

    图 2  MATB任务用户界面

    Figure 2.  User interface of MATB task

    图 3  基于MATB任务的脑力负荷量化评估流程

    Figure 3.  Flow chart of MWL quantitative evaluation based on MATB task

    图 4  NASA-TLX量表的MWL与SWC和TDL差值的关系

    Figure 4.  Relationship between NASA scale score and (SWC−TDL)

    图 5  被试者脑力负荷量化评估结果

    Figure 5.  Results of MWL quantification evaluation of subjects

    图 6  脑力负荷与任务水平关系

    Figure 6.  Relationship between MWL and task load level

    图 7  被试剩余脑力负荷

    Figure 7.  SMWL of subject

    图 8  剩余脑力负荷与不同任务水平的关系

    Figure 8.  Relationship between SMWL and different task load level

    图 9  被试脑力负荷占用率

    Figure 9.  ORMWL of subject

    图 10  脑力负荷占用率与不同任务水平的关系

    Figure 10.  Relationship between ORMWL and different task load level

    表  1  MATB子任务信息

    Table  1.   Details of MATB subtasks

    任务名称区域任务内容
    系统监控1要求被试监控F1~F4刻度栏的指针,当动态指针触及任意刻度栏的上下3格时,用鼠标左键点击对应的刻度栏
    追踪2要求被试在手动模式下用摇杆将目标保持在网格中心,在自动模式下不需要任何动作
    通信3要求被试监控通信刻度中激活的通信任务,当激活的通信任务,即左侧的(绿色)方形滑块触碰到上方圆(红)点时,按键盘的右方向键进行响应
    资源管理4要求被试监控编号为1~8的油泵状态,当油泵出现故障(变红)时,用鼠标左键点击对应的油泵进行响应
    下载: 导出CSV

    表  2  实验流程表

    Table  2.   Experimental process

    步骤序号实验内容时间/min
    1实验培训与准备60
    2静息实验5
    3正式实验112
    4填表2
    5休息6
    6正式实验212
    7填表2
    8休息6
    9正式实验312
    10填表2
    11确定量表维度权重1
    下载: 导出CSV

    表  3  MATB子任务最大响应时间及信息复杂度

    Table  3.   MATB subtask maximum response time and information complexity

    任务名称最长响应时间/s信息复杂度
    系统监控62.3026
    追踪81.7481
    通信100.8856
    资源管理80.9831
    下载: 导出CSV
  • [1] SHERIDAN T B. Mental workload in decision and control[C]// 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. Piscataway: IEEE Press, 2007: 977-982.
    [2] 柳忠起, 袁修干, 刘涛, 等. 航空工效中的脑力负荷测量技术[J]. 人类工效学, 2003, 9(2): 19-22. doi: 10.3969/j.issn.1006-8309.2003.02.006

    LIU Z Q, YUAN X G, LIU T, et al. Measurement technology of mental workload in aviation ergonomics[J]. Chinese Ergonomics, 2003, 9(2): 19-22(in Chinese). doi: 10.3969/j.issn.1006-8309.2003.02.006
    [3] 康卫勇, 袁修干, 柳忠起, 等. 飞机座舱视觉显示界面脑力负荷综合评价方法[J]. 航天医学与医学工程, 2008, 21(2): 103-107. doi: 10.3969/j.issn.1002-0837.2008.02.006

    KANG W Y, YUAN X G, LIU Z Q, et al. Synthetic evaluation method of mental workload on visual display interface in airplane cockpit[J]. Space Medicine & Medical Engineering, 2008, 21(2): 103-107(in Chinese). doi: 10.3969/j.issn.1002-0837.2008.02.006
    [4] QU H Q, SHAN Y P, LIU Y Z, et al. Mental workload classification method based on EEG independent component features[J]. Applied Sciences, 2020, 10(9): 3036. doi: 10.3390/app10093036
    [5] 张洁, 庞丽萍, 完颜笑如, 等. 基于脑电功率谱密度的作业人员脑力负荷评估方法[J]. 航空学报, 2020, 41(10): 123618.

    ZHANG J, PANG L P, WANYAN X R, et al. Method for operator mental workload assessment based on power spectral density of EEG[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123618(in Chinese).
    [6] SIEGEL A I, WOLF J J. Man-machine simulation models[M]. Hoboken: Wiley-Inter-Science, 1969.
    [7] WICKENS C D. Mental Workload: Assessment, prediction and consequences[C]//LONGO L, LEVA M. International Symposium on Human Mental Workload: Models and Applications. Berlin: Springer, 2017: 18-29.
    [8] 王洁, 方卫宁, 李广燕. 基于多资源理论的脑力负荷评价方法[J]. 北京交通大学学报, 2010, 34(6): 107-110. doi: 10.3969/j.issn.1673-0291.2010.06.024

    WANG J, FANG W N, LI G Y. Mental workload evaluation method based on multi-resource theory model[J]. Journal of Beijing Jiaotong University, 2010, 34(6): 107-110(in Chinese). doi: 10.3969/j.issn.1673-0291.2010.06.024
    [9] NEERINCX M A, KENNEDIE S, GROOTJEN M, et al. Modeling the cognitive task load and performance of naval operators[C]//International Conference on Foundations of Augmented Cognition. Berlin: Springer, 2009: 260-269.
    [10] NEERINCX M A, VELTMAN J A. How to manage cognitive task load during supervision and damage control in an all-electric ship[J]. IASME Transactions, 2012, 2(1): 253-258.
    [11] COLIN T R, MIOCH T, SMETS N J J M, et al. Estimating an operator’s cognitive state in real time: A user modeling approach[C]// 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication. Piscataway: IEEE Press, 2012: 627-633.
    [12] 张安, 任卫, 汤志荔, 等. 基于CTL模型和任务绩效的驾驶舱动态功能分配方法[J]. 火力与指挥控制, 2018, 43(7): 151-156. doi: 10.3969/j.issn.1002-0640.2018.07.028

    ZHANG A, REN W, TANG Z L, et al. Dynamic function allocation for cockpit based on CTL model and task performance[J]. Fire Control & Command Control, 2018, 43(7): 151-156(in Chinese). doi: 10.3969/j.issn.1002-0640.2018.07.028
    [13] XIAO X, WANYAN X R, ZHUANG D M. Mental workload prediction based on attentional resource allocation and information processing[J]. Bio-Medical Materials and Engineering, 2015, 26(S1): S871-S879.
    [14] HEILIGERS M, VAN HOLTEN T, MULDER M. Factors that influence pilot task demand load during area navigation approaches[J]. Journal of Aircraft, 2011, 48(3): 975-994. doi: 10.2514/1.C031188
    [15] HEILIGERS M M, VAN HOLTEN T, MULDER M. Predicting pilot task demand load during final approach[J]. The International Journal of Aviation Psychology, 2009, 19(4): 391-416. doi: 10.1080/10508410902983987
    [16] COMANS J, VAN PAASSEN M M, MULDER M. Pilot workload monitoring and adaptive aviation automation: A solution space-based approach[C]// Proceedings of the 28th Annual European Conference on Cognitive Ergonomics. New York: ACM, 2010: 245-250.
    [17] DA SILVA F P. Mental workload, task demand and driving performance: What relation?[J]. Procedia Social & Behavioral Sciences, 2014, 162: 310-319.
    [18] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(4): 623-656. doi: 10.1002/j.1538-7305.1948.tb00917.x
    [19] MOWSHOWITZ A. Entropy and the complexity of graphs: II. The information content of digraphs and infinite graphs[J]. The Bulletin of Mathematical Biophysics, 1968, 30(2): 225-240. doi: 10.1007/BF02476692
    [20] ZHANG J, PANG L P, CAO X D, et al. The effects of elevated carbon dioxide concentration and mental workload on task performance in an enclosed environmental chamber[J]. Building and Environment, 2020, 178: 106938. doi: 10.1016/j.buildenv.2020.106938
    [21] BUEHLER M G, ALLEN R A, BLAES B R, et al. National Aeronautics and Space Administration[M]. Berlin: Springer, 2011.
    [22] GUTZWILLER R S, WICKENS C D, CLEGG B A. Workload overload modeling[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2014, 58(1): 849-853. doi: 10.1177/1541931214581179
    [23] WICKENS C D, GUTZWILLER R S, VIEANE A, et al. Time sharing between robotics and process control: Validating a model of attention switching[J]. Human Factors, 2016, 58(2): 322-343. doi: 10.1177/0018720815622761
    [24] CHANDRA S, SHARMA G, SHARMA M, et al. Workload regulation by Sudarshan Kriya: An EEG and ECG perspective[J]. Brain Informatics, 2017, 4(1): 13-25. doi: 10.1007/s40708-016-0055-1
    [25] FAIRCLOUGH S H, VENABLES L. Prediction of subjective states from psychophysiology: A multivariate approach[J]. Biological Psychology, 2006, 71(1): 100-110. doi: 10.1016/j.biopsycho.2005.03.007
    [26] 冯传宴, 完颜笑如, 刘双, 等. 负荷条件下注意力分配策略对情境意识的影响[J]. 航空学报, 2020, 41(3): 123307.

    FENG C Y, WANYAN X R, LIU S, et al. Influence of different attention allocation strategies under workloads on situation awareness[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123307(in Chinese).
    [27] 范晓丽, 牛海燕, 周前祥, 等. 基于EEG的脑力疲劳特征研究[J]. 北京航空航天大学学报, 2016, 42(7): 1406-1413. doi: 10.13700/j.bh.1001-5965.2015.0428

    FAN X L, NIU H Y, ZHOU Q X, et al. Mental fatigue characteristics based on EEG analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1406-1413(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0428
    [28] DE WAARD D, BROOKHUIS K A. The measurement of drivers’ mental workload[D]. Groningen: University of Groningen, 1996.
    [29] KIM N Y, HOUSE R, YUN M H, et al. Neural correlates of workload transition in multitasking: An ACT-R model of hysteresis effect[J]. Frontiers in Human Neuroscience, 2019, 12: 535. doi: 10.3389/fnhum.2018.00535
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  59
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 录用日期:  2021-10-11
  • 网络出版日期:  2021-12-16
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答