留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ERWOA的多输出MPRM电路面积优化

何俊才 何振学 王福顺 霍志胜 肖利民

何俊才,何振学,王福顺,等. 基于ERWOA的多输出MPRM电路面积优化[J]. 北京航空航天大学学报,2023,49(5):1193-1200 doi: 10.13700/j.bh.1001-5965.2021.0410
引用本文: 何俊才,何振学,王福顺,等. 基于ERWOA的多输出MPRM电路面积优化[J]. 北京航空航天大学学报,2023,49(5):1193-1200 doi: 10.13700/j.bh.1001-5965.2021.0410
HE J C,HE Z X,WANG F S,et al. Circuit area optimization of multi-output MPRM based on ERWOA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1193-1200 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0410
Citation: HE J C,HE Z X,WANG F S,et al. Circuit area optimization of multi-output MPRM based on ERWOA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1193-1200 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0410

基于ERWOA的多输出MPRM电路面积优化

doi: 10.13700/j.bh.1001-5965.2021.0410
基金项目: 国家自然科学基金(62102130);中央引导地方科技发展项目基金(226Z0201G);河北省自然科学基金(F2020204003);河北省青年拔尖人才计划项目(BJ2019008);河北省高等学校科学技术研究项目(QN2022095);河北省省属高等学校基本科研业务费研究项目(KY2022073)
详细信息
    通讯作者:

    E-mail:hezhenxue@buaa.edu.cn

  • 中图分类号: V443;TP391.72

Circuit area optimization of multi-output MPRM based on ERWOA algorithm

Funds: National Natural Science Foundation of China (62102130); Central Government Guides Local Science and Technology Development Fund Project (226Z0201G); Hebei Natural Science Foundation (F2020204003); Science and Technology project of Hebei Education Department (BJ2019008); Science and Technology Research Projects of Higher Education Institutions in Hebei Province (QN2022095); Basic Scientific Research Funds Research Project of Hebei Provincial Colleges and Universities (KY2022073)
More Information
  • 摘要:

    混合极性Reed-Muller(MPRM)电路面积优化已成为集成电路设计领域的研究热点。MPRM电路面积优化是在众多的MPRM表达式中寻找与项个数最少的MPRM表达式,属于组合优化问题。为此,提出一种具有爆炸和重启机制的鲸鱼优化算法(ERWOA)。同时,提出一种多输出MPRM电路面积优化方法,该方法利用改进的鲸鱼优化算法和改进的混合极性转换算法搜索含与项个数最少的MPRM电路。基于MCNC Benchmark测试电路的实验结果表明:改进后的混合极性转换算法与基于列表技术的混合极性转换算法相比,转换效率最大提升了99.93%,与基于列表技术的极性间转换算法相比,转换效率最大提升了99.96%;改进后的鲸鱼优化算法与遗传算法相比,节省电路面积百分比最高为18.32%,平均为5.54%,与人工蜂群算法相比,节省电路面积百分比最高为14.41%,平均为5.00%。

     

  • 图 1  爆炸过程

    Figure 1.  Explosion process

    图 2  方法流程

    Figure 2.  Algorithm flowchart

    图 3  newcond电路收敛曲线

    Figure 3.  Convergence curves of newcond circuit

    图 4  misex3电路收敛曲线

    Figure 4.  Convergence curves of misex3 circuit

    图 5  in0收敛曲线

    Figure 5.  Convergence curves of in0 circuit

    图 6  b2电路收敛曲线

    Figure 6.  Convergence curves of b2 circuit

    表  1  算法参数

    Table  1.   Algorithm parameters

    参数种群最大迭
    代次数
    值不变
    次数
    火花数变异率交叉率蜜源位置
    不变次数
    WOA80110
    GA500.080.8
    ABC60 9
    ERWOA40130 5 30
    下载: 导出CSV

    表  2  混合极性转换实验数据

    Table  2.   Experimental data of mixed polarity conversion

    电路I/O运行时间/s${R_{ {\text{save}} } }$/%area1area2
    算法1算法2
    misex18/70006060
    ex101010/100.010.01010231023
    misex314/140.410.0782.9360286028
    table314/142.310.1294.8155095509
    t48116/16.540.2396.484141
    al216/4720.680.4697.78358358
    ryy616/13.550.1795.218080
    spla16/4695.481.0498.913485234852
    t217/1617.010.5496.8324902490
    table517/15319.471.1799.637450474504
    in219/10750.732.0199.7363156315
    shift19/167306.434.7599.93128128
    mark120/315792.215.2699.91163838163 838
    下载: 导出CSV

    表  3  极性间转换实验数据

    Table  3.   Experimental data for conversion between different polarities

    电路I/O运行时间/s$ {R_{{\text{save}}}} $/%area3area4
    算法3算法4
    misex18/7000128128
    ex101010/100.010.010810810
    misex314/144.580.1696.511228112281
    table314/140.540.0787.0432733273
    t48116/116.740.2598.514201642016
    al216/4770.710.5499.246553665536
    ryy616/11.980.0995.451971019710
    spla16/4651.340.5998.854217742177
    t217/16313.761.0799.665003250032
    table517/1545.140.7598.342866828668
    in219/106405.113.4099.95420176420176
    shift19/165774.482.2999.96524033524033
    mark120/3115102.416.4299.96524512524512
    下载: 导出CSV

    表  4  算法实验数据

    Table  4.   Experiment data of algorithm

    电路I/OWOAGAABCERWOA
    最优值最差值标准差平均值最优值最差值标准差平均值最优值最差值标准差平均值最优值最差值标准差平均值
    max5129/620129520.46205.852012153.13202.752012040.78201.302012010201.00
    ex101010/10810101145.16823.1581092626.15890.1081087924.16820.158108100810
    newcond11/248521.3049.0048510.7848.3048521.1948.704848048.00
    br112/823465.0424.5023250.4423.1023271.0723.502323023.00
    amd14/241041081.16104.601041183.04107.401041254.60106.501041040104.00
    misex314/141421173182.151493.6514211832114.481632.0014211964143.531663.251421147211.121423.55
    in015/1124240835.82254.152422698.32251.752422657.35251.002422430.46242.30
    newtpla15/538400.5938.4538390.4638.3038451.5038.8038390.2238.05
    b216/1733337312.57344.9033337011.25347.5033345330.43362.203333330333.00
    b916/510525132.06116.3010516114.63128.5510523328.80117.151051050105.00
    in116/1733337614.54345.2033339015.18359.1533348243.55371.653333330333.00
    pdc16/4068375217.69696.1069475727.02724.1068391755.12714.206836934.00685.00
    下载: 导出CSV
  • [1] WANG Y C, WANG L Y. Power optimization for FPRM logic using approximate computing technique[C]//2019 IEEE 13th International Conference on ASIC (ASICON). Piscataway: IEEE Press, 2020: 1-4.
    [2] HE Z X, WU X Q, WANG C, et al. Delay optimization for ternary fixed polarity Reed-Muller circuits based on multilevel adaptive quantum genetic algorithm[J]. International Journal of Intelligent Systems, 2021, 36(10): 5981-6006. doi: 10.1002/int.22538
    [3] 周宇豪, 何振学, 梁新艺, 等. 基于BABFA的XNOR/OR电路面积优化[J]. 北京航空航天大学学报, 2022, 48(10): 2031-2039.

    ZHOU Y H, HE Z X, LIANG X Y, et al. Optimization of XNOR/OR circuit area based on BABFA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2031-2039(in Chinese).
    [4] XIAO L M, HE Z X, RUAN L, et al. Optimization of best polarity searching for mixed polarity reed-muller logic circuit[C]//2015 28th IEEE International System-on-Chip Conference (SOCC). Piscataway: IEEE Press, 2016: 275-280.
    [5] FU Q, WANG P J, TONG N, et al. Integrated polarity optimization of MPRM circuits based on improved multi-objective particle swarm optimization[J]. Chinese Journal of Electronics, 2020, 29(5): 833-840. doi: 10.1049/cje.2020.07.005
    [6] 卜登立. 基于概率表达式的MPRM电路功耗计算方法[J]. 电子学报, 2018, 46(12): 3060-3067. doi: 10.3969/j.issn.0372-2112.2018.12.033

    BU D L. Probability expression based power estimation method for MPRM circuits[J]. Acta Electronica Sinica, 2018, 46(12): 3060-3067(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.12.033
    [7] WANG X, ZHANG R, WANG W K, et al. Polarity searching for MPRM logic circuit based on improved adaptive genetic algorithm[C]//IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). Piscataway: IEEE Press, 2016: 1354-1358.
    [8] 李辉, 汪鹏君, 王振海. 混合极性列表技术及其在MPRM电路面积优化中的应用[J]. 计算机辅助设计与图形学学报, 2011, 23(3): 527-533.

    LI H, WANG P J, WANG Z H. Tabular techniques for mixed-polarity and its application in area optimization of MPRM circuits[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(3): 527-533(in Chinese).
    [9] WANG P J, LI H, WANG Z H. MPRM expressions minimization based on simulated annealing genetic algorithm[C]//IEEE International Conference on Intelligent Systems and Knowledge Engineering. Piscataway: IEEE Press, 2011: 261-265.
    [10] 李辉. 混合极性Reed-Muller逻辑电路功耗和面积优化[D]. 宁波: 宁波大学, 2011.

    LI H. Power and area optimization of mixed polarity reed-muller logic circuits[D]. Ningbo: Ningbo university, 2011(in Chinese).
    [11] 卜登立, 江建慧, 罗文浪. 基于2个阶段遗传算法的MPRM电路面积与SER折中优化[J]. 计算机辅助设计与图形学报, 2017, 29(10): 1924-1934.

    BU D L, JIANG J H, LUO W L. Two-phase GA based area and SER trade-off algorithm for MPRM circuits[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(10): 1924-1934(in Chinese).
    [12] 卜登立, 江建慧. 基于混合多值离散粒子群优化的混合极性Reed-Muller最小化算法[J]. 电子与信息学报, 2013, 35(2): 361-367.

    BU D L, JIANG J H. Hybrid multi-valued discrete particle swarm optimization algorithm for mixed-polarity Reed-Muller minimization[J]. Journal of Electronics & Information Technology, 2013, 35(2): 361-367(in Chinese).
    [13] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [14] 龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983-2994. doi: 10.12011/1000-6788(2017)11-2983-12

    LONG W, CAI S H, JIAO J J, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory & Practice, 2017, 37(11): 2983-2994(in Chinese). doi: 10.12011/1000-6788(2017)11-2983-12
    [15] ABDEL-BASSET M, EL-SHAHAT D, SANGAIAH A K. A modified nature inspired meta-heuristic whale optimization algorithm for solving 0-1 knapsack problem[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(3): 495-514. doi: 10.1007/s13042-017-0731-3
    [16] STRUMBERGER I, BACANIN N, TUBA M L, et al. Resource scheduling in cloud computing based on a hybridized whale optimization algorithm[J]. Applied Sciences, 2019, 9(22): 4893. doi: 10.3390/app9224893
    [17] GAUTAM A, BISWAS M. Whale optimization algorithm based edge detection for noisy image[C]//2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). Piscataway: IEEE Press, 2019: 1878-1883.
    [18] VARMA D, TRACHTENBERG E A. Computation of Reed-Muller expansions of incompletely specified Boolean functions from reduced representations[J]. IEE Proceedings E Computers and Digital Techniques, 1991, 138(2): 85-92. doi: 10.1049/ip-e.1991.0011
    [19] TAN Y, ZHU Y C. Fireworks algorithm for optimization[C]//Proceedings of the First International Conference on Advances in Swarm Intelligence - Volume Part I. New York: ACM, 2010: 355-364.
    [20] 谭营, 郑少秋. 烟花算法研究进展[J]. 智能系统学报, 2014, 9(5): 515-528. doi: 10.3969/j.issn.1673-4785.201409010

    TAN Y, ZHENG S Q. Recent advances in fireworks algorithm[J]. CAAI Transactions on Intelligent Systems, 2014, 9(5): 515-528(in Chinese). doi: 10.3969/j.issn.1673-4785.201409010
    [21] KRISHNAKUMAR K. Micro-genetic algorithms for stationary and non-stationary function optimization[C]//Proceedings SPIE 1196, Intelligent Control and Adaptive Systems, 1990, 1196: 289-296.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-14
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答