留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非合作目标弹道系数解算研究及应用

刘舒莳 李勰 满海钧 陈光明 曹建峰 鞠冰

刘舒莳,李勰,满海钧,等. 非合作目标弹道系数解算研究及应用[J]. 北京航空航天大学学报,2023,49(5):1036-1043 doi: 10.13700/j.bh.1001-5965.2021.0414
引用本文: 刘舒莳,李勰,满海钧,等. 非合作目标弹道系数解算研究及应用[J]. 北京航空航天大学学报,2023,49(5):1036-1043 doi: 10.13700/j.bh.1001-5965.2021.0414
LIU S S,LI X,MAN H J,et al. Ballistic coefficient solution for non-cooperative targets and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1036-1043 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0414
Citation: LIU S S,LI X,MAN H J,et al. Ballistic coefficient solution for non-cooperative targets and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1036-1043 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0414

非合作目标弹道系数解算研究及应用

doi: 10.13700/j.bh.1001-5965.2021.0414
基金项目: 国家自然科学基金(41604131,41874183,61803018,11973015)
详细信息
    通讯作者:

    E-mail:lixie_afdl@163.com

  • 中图分类号: V474.3

Ballistic coefficient solution for non-cooperative targets and its application

Funds: National Natural Science Foundation of China (41604131,41874183,61803018,11973015)
More Information
  • 摘要:

    弹道系数是非合作目标轨道预报的重要参数,对于数目庞大的非合作目标,利用有限的测控资源进行弹道系数的快速解算是空间目标监测的迫切需求。基于双行根数(TLE)的半长轴衰减信息,提出了一种改进的弹道系数解算算法。通过多项式平滑检测和二次判别,识别出野值、轨道机动和地磁暴3种情况;分析了构造半长轴衰减观测量的依据,比较了不同观测弧长对弹道系数解算的影响;利用天宫一号数据对所提算法解算的弹道系数进行精度评估,并将解算结果在天宫一号陨落预报中进行验证。结果表明:基于TLE解算的弹道系数稳定、准确,适用于非合作目标轨道预报。

     

  • 图 1  弹道系数解算流程

    Figure 1.  Flowchart of ballistic coefficient solution

    图 2  TLE星历与精密星历每日高度衰减对比

    Figure 2.  Comparison of daily height attenuation between TLE and precision ephemeris

    图 3  TLE星历与精密星历每2日高度衰减对比

    Figure 3.  Comparison of every two days height attenuation between TLE and precision ephemeris

    图 4  半长轴平滑值与实测值的差异(起始日期2012-01-01)

    Figure 4.  Difference between semi-major axis smoothed values and measured values (start date Jan. 1, 2012)

    图 5  地磁指数变化

    Figure 5.  Variations of geomagnetic index

    图 6  精密定轨解算弹道系数和空间环境指数

    Figure 6.  Ballistic coefficients solved by orbit determination and space environment index

    图 7  精密定轨解算的大气阻力系数及其平滑值(起始日期2012-01-01)

    Figure 7.  Drag coefficients solved by orbit determination and their smoothed values (start date Jan. 1, 2012)

    图 8  TLE解算的大气阻力系数(起始日期2012-01-01)

    Figure 8.  Drag coefficients solved by TLE (start date Jan. 1, 2012)

    图 9  天宫一号陨落前轨道高度变化

    Figure 9.  Height variation of Tiangong-1 before reentry

    图 10  天宫一号TLE半长轴平滑检测结果

    Figure 10.  Semi-major axis smoothing test results for Tiangong-1 TLE

    图 11  陨落前30 d不同观测弧段解算的弹道系数

    Figure 11.  Ballistic coefficients solved with different observation arcs before 30 days of reentry

    图 12  使用不同弹道系数的预报误差

    Figure 12.  Prediction errors using different ballistic coefficients

    图 13  各国与本文发布的天宫一号陨落预报误差比较

    Figure 13.  Comparison of Tiangong-1 reentry forecast errors issued by various countries and this paper

  • [1] AILOR W. Spacecraft end-of-life disposal[M]//BLOCKLEY R, SHYY W. Encyclopedia of aerospace engineering. New York: John Wiley & Sons Ltd, 2010: 105-120.
    [2] 李翠兰, 欧阳琦, 陈明, 等. 大型低轨航天器与星座卫星的碰撞风险研究[J]. 宇航学报, 2020, 41(9): 1158-1165.

    LI C L, OUYANG Q, CHEN M, et al. Analysis of collision risk between constellation satellites and large low-orbit spacecraft[J]. Journal of Astronautics, 2020, 41(9): 1158-1165(in Chinese).
    [3] CORLEY B. International space station debris avoidance process [EB/OL]. (2016-08-01) [2021-07-20]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv2014.pdf.
    [4] 王晓楠, 高山, 程柏林. 基于不敏卡尔曼滤波平滑的再入弹头弹道系数提取[J]. 火力与指挥控制, 2011, 36(6): 89-92.

    WANG X N, GAO S, CHENG B L. Extraction of ballistic coefficient of reentry warhead based on unscented Kalman filtering smoothing[J]. Fire Control & Command Control, 2011, 36(6): 89-92(in Chinese).
    [5] 张金凤, 何重阳, 梁彦. 面向再入目标跟踪的估计与辨识联合优化算法[J]. 航空学报, 2016, 37(5): 1634-1643.

    ZHANG J F, HE C Y, LIANG Y. Joint optimization algorithm of estimation and identification for reentry target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1634-1643(in Chinese).
    [6] 刘舒莳, 龚建村, 刘四清, 等. 中长期轨道预报中大气阻力系数补偿算法的研究[J]. 宇航学报, 2013, 34(2): 157-162.

    LIU S S, GONG J C, LIU S Q, et al. Atmospheric drag coefficient calibration in medium-term orbit prediction[J]. Journal of Astronautics, 2013, 34(2): 157-162(in Chinese).
    [7] LIDTKE A A, GONDELACH D J, ARMELLIN R, et al. Processing two line element sets to facilitate re-entry prediction of spent rocket bodies from the geostationary transfer orbit[C]//Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques, 2016: 1-5.
    [8] 许晓丽, 熊永清. 基于历史TLE的空间目标轨道预报误差演化规律研究[J]. 天文学报, 2019, 60(4): 28-40.

    XU X L, XIONG Y Q. Study on orbit prediction error of space objects based on historical TLE[J]. Acta Astronomica Sinica, 2019, 60(4): 28-40(in Chinese).
    [9] GUPTA S, ANILKUMAR A K. Integrated model for prediction of reentry time of risk objects[J]. Journal of Spacecraft and Rockets, 2015, 52(1): 295-299. doi: 10.2514/1.A32704
    [10] SHOEMAKER M A, VAN DER HA J C, FUJITA K. Trajectory reconstruction of Hayabusa’s atmospheric reentry[J]. Acta Astronautica, 2012, 71: 151-162. doi: 10.1016/j.actaastro.2011.08.006
    [11] SHARMA R K, BANDYOPADHYAY P, ADIMURTHY V. Lifetime estimation of upper stages re-entering from GTO by genetic algorithm with response surface approximation[C]//Proceedings of the International Astronautical Congress, 2006: 1-4.
    [12] SANG J Z, BENNETT J C, SMITH C H. Estimation of ballistic coefficients of low altitude debris objects from historical two line elements[J]. Advances in Space Research, 2013, 52(1): 117-124. doi: 10.1016/j.asr.2013.03.010
    [13] SAUNDERS A, LEWIS H G, SWINERD G G. A new tool for satellite reentry predictions[C]//5th European Conference of Space Debris, 2009: 1-3.
    [14] SAUNDERS A, SWINERD G G, LEWIS H G. Deriving accurate satellite ballistic coefficients from two-line element data[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 175-184. doi: 10.2514/1.A32023
    [15] 唐歌实, 李勰. 载人航天轨道确定技术及在交会对接中的应用[M]. 北京: 国防工业出版社, 2013: 121-143.

    TANG G S, LI X. Orbit determination technology of manned spacecraft and application in rendezvous and docking[M]. Beijing: National Defense Industry Press, 2013: 121-143(in Chinese).
    [16] 汤锡生, 陈贻迎, 朱民才. 载人飞船轨道确定和返回控制[M]. 北京: 国防工业出版社, 2002: 47-52.

    TANG X S, CHEN Y Y, ZHU M C. Orbit determination and reentry control for manned spacecraft[M]. Beijing: National Defense Industry Press, 2002: 47-52(in Chinese).
    [17] HOOTS F R, ROEHRHICH R L. Models for propagation of NORAD element sets[R]. [S.l.]: Office of Astrodynamics, Aerospace Defense Center, U. S. , 1980: 10-31.
    [18] COOK G E. Satellite drag coefficients[J]. Planetary and Space Science, 1965, 13(10): 929-946. doi: 10.1016/0032-0633(65)90150-9
    [19] MEHTA P M, WALKER A, LAWRENCE E, et al. Modeling satellite drag coefficients with response surfaces[J]. Advances in Space Research, 2014, 54(8): 1590-1607. doi: 10.1016/j.asr.2014.06.033
    [20] RUSSEL R, ARORA N, VITTALDEV V, et al. Ballistic coefficient prediction for resident space objects[C]//Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2012: 1-6.
    [21] NWANKWO V U J, DENIG W, CHAKRABARTI S K, et al. Atmospheric drag effects on modelled low Earth orbit (LEO) satellites during the July 2000 Bastille Day event in contrast to an interval of geomagnetically quiet conditions[J]. Annales Geophysicae, 2021, 39: 397-412. doi: 10.5194/angeo-39-397-2021
    [22] MOE K, MOE M M. Gas-surface interactions and satellite drag coefficients[J]. Planetary and Space Science, 2005, 53(8): 793-801. doi: 10.1016/j.pss.2005.03.005
  • 加载中
图(13)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  26
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 录用日期:  2021-07-30
  • 网络出版日期:  2021-09-02
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答