留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应混合网格的高马赫数空腔流动模拟

张培红 唐银 唐静 罗磊 贾洪印 张耀冰

张培红,唐银,唐静,等. 基于自适应混合网格的高马赫数空腔流动模拟[J]. 北京航空航天大学学报,2023,49(6):1311-1318 doi: 10.13700/j.bh.1001-5965.2021.0424
引用本文: 张培红,唐银,唐静,等. 基于自适应混合网格的高马赫数空腔流动模拟[J]. 北京航空航天大学学报,2023,49(6):1311-1318 doi: 10.13700/j.bh.1001-5965.2021.0424
ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0424
Citation: ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0424

基于自适应混合网格的高马赫数空腔流动模拟

doi: 10.13700/j.bh.1001-5965.2021.0424
基金项目: 国家数值风洞工程项目
详细信息
    通讯作者:

    E-mail:zph2s@sina.com

  • 中图分类号: V221+.3;O355

Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh

Funds: National Numerical Windtunnel Project
More Information
  • 摘要:

    空腔流动尤其是高马赫数(Ma>2)空腔流动,存在强激波、强剪切和分离涡,及其相互之间的干扰,流动复杂,网格分布及网格生成的质量对模拟结果影响很大。将建立的基于非结构混合网格的自适应探测器,应用到高马赫数空腔流动数值模拟中,通过空腔标模算例考核,验证了采用网格自适应技术可以更好地模拟存在大分离和强剪切的高马赫数空腔流动。开展了马赫数、雷诺数等流动参数对空腔流动特性影响的研究,随马赫数增大空腔内动压急剧升高,自由流和剪切层对后壁面的冲击效应明显增强,压力分布的不均匀程度提高,后壁面上的压力峰值均逐渐增大。雷诺数增大会使后壁面处的压力峰值增大,并且高马赫数条件相比于低马赫数条件下雷诺数对腔内压力分布的影响更显著。

     

  • 图 1  网格加密方式

    Figure 1.  Refining approach of mesh elements

    图 2  网格粗化及树形数据结构

    Figure 2.  Mesh coarsening and tree data structure

    图 3  自适应前和自适应后的网格分布

    Figure 3.  Adapted mesh before and after adaptation

    图 4  典型的闭式空腔流动结构

    Figure 4.  Typical flow structure of closed cavity

    图 5  自适应前和自适应后空腔底部压力分布与试验比较

    Figure 5.  Comparison of pressure distribution of cavity floor before and after mesh adaptation to test data

    图 6  自适应前和自适应后空腔对称面压力系数分布及流线

    Figure 6.  Pressure coefficient distribution and streamlines on symmetrical face before and after mesh adaptation

    图 7  不同马赫数下空腔表面的压力分布

    Figure 7.  Pressure distributions of cavity surface at different Mach numbers

    图 8  不同马赫数下空腔底板和后壁面的压力分布

    Figure 8.  Pressure distributions on symmetrical surface of bottom floor and rear wall at different Mach numbers

    图 9  不同雷诺数下空腔表面的压力分布云图

    Figure 9.  Pressure distributions of cavity surface at different Reynolds numbers

    图 10  不同雷诺数下空腔底部对称面的压力分布比较

    Figure 10.  Pressure distributions on symmetrical surface of cavity floor at different Reynolds numbers

    图 11  腔后壁台阶处不同雷诺数下总压恢复等值线比较

    Figure 11.  Isolines of total pressure recovery near the rear wall at different Reynolds numbers

  • [1] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. doi: 10.1016/j.paerosci.2010.11.002
    [2] ROSSITER J E. Wind-tunnel experimental on the flow over rectangular cavities at subsonic and transonic speeds: RAE Technical Report No. 64037[R]. London: REA, 1964.
    [3] SUHS N E. Computational of three-dimensional cavity flow at subsonic and supersonic Mach numbers: AIAA-87-1208[R]. Reston: AIAA, 1987: 1-9.
    [4] STALLINGS R L J, WILCOX F J J. Experimental cavity pressure distributions at supersonic speeds: NASA TP-2683[R]. Washington, D. C. : NASA, 1987: 1-75.
    [5] LARCHEVÊQUE L, SAGAUT P, LÊ T H, et al. Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number[J]. Journal of Fluid Mechanics, 2004, 516: 265-301. doi: 10.1017/S0022112004000709
    [6] 马明生, 张培红, 邓有奇, 等. 超声速空腔流动数值模拟研究[J]. 空气动力学学报, 2008, 26(3): 388-393. doi: 10.3969/j.issn.0258-1825.2008.03.021

    MA M S, ZHANG P H, DENG Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3): 388-393(in Chinese). doi: 10.3969/j.issn.0258-1825.2008.03.021
    [7] 黎军, 张群峰, 曾宏刚, 等. 腔体闭式流动控制的实验和数值模拟[J]. 北京航空航天大学学报, 2008, 34(1): 96-99. doi: 10.13700/j.bh.1001-5965.2008.01.013

    LI J, ZHANG Q F, ZENG H G, et al. Experimental and numerical investigation of controls for closed cavity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(1): 96-99(in Chinese). doi: 10.13700/j.bh.1001-5965.2008.01.013
    [8] 吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71-75. doi: 10.3969/j.issn.1672-9897.2008.01.015

    WU J F, LUO X F, FAN Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and supersonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71-75(in Chinese). doi: 10.3969/j.issn.1672-9897.2008.01.015
    [9] 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012: 1-178.

    WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012: 1-178 (in Chinese) .
    [10] 谢露, 张彦军, 侯银珠, 等. 亚声速武器舱空腔流动压力特性及其控制方法[J]. 航空学报, 2020, 41(11): 123961.

    XIE L, ZHANG Y J, HOU Y Z, et al. Cavity flow pressure characteristics and flow control methods of subsonic weapon bay[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123961(in Chinese).
    [11] SHEPHARD M. Automatic and adaptive mesh generation[J]. IEEE Transactions on Magnetics, 1985, 21(6): 2484-2489. doi: 10.1109/TMAG.1985.1064241
    [12] 张培红, 赵炜, 张耀冰, 等. CFD在飞翼标模支撑干扰影响研究中的应用[J]. 计算力学学报, 2020, 37(6): 743-749. doi: 10.7511/jslx20191112002

    ZHANG P H, ZHAO W, ZHANG Y B, et al. Application of CFD in the investigation on support interference of flying-wing calibration model[J]. Chinese Journal of Computational Mechanics, 2020, 37(6): 743-749(in Chinese). doi: 10.7511/jslx20191112002
    [13] NAKAHASHI K, DEIWERT G S. Three-dimensional adaptive grid method[J]. AIAA Journal, 1986, 24(6): 948-954. doi: 10.2514/3.9369
    [14] BAI W, QIU Z, LI L. Recent efforts to establish adaptive hybrid grid computing capability at ACTRI[J]. Computational Fluid Dynamics Journal, 2007, 7(4): 438-449.
    [15] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10): 122894. doi: 10.7527/S1000-6893.2019.22894

    TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122894(in Chinese). doi: 10.7527/S1000-6893.2019.22894
    [16] 陈宣友, 董海涛, 李椿萱, 等. 3点逐步r型自适应网格算法[J]. 北京航空航天大学学报, 2006, 32(1): 13-17. doi: 10.3969/j.issn.1001-5965.2006.01.004

    CHEN X Y, DONG H T, LI C X, et al. Three-point step-by-step generating r-type adaptive grid technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(1): 13-17(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.01.004
    [17] LENTINI M, PEREYRA V. An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers[J]. SIAM Journal on Numerical Analysis, 1977, 14(1): 91-111. doi: 10.1137/0714006
    [18] BERGER M J, OLIGER J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. Journal of Computational Physics, 1984, 53(3): 484-512. doi: 10.1016/0021-9991(84)90073-1
    [19] BECKER R, RANNACHER R. An optimal control approach to a posteriori error estimation in finite element methods[J]. Acta Numerica, 2001, 10: 1-102. doi: 10.1017/S0962492901000010
    [20] GILES M B, PIERCE N A. Adjoint error correction for integral outputs[M]. Berlin: Springer, 2002: 47-96.
    [21] BARTH T. Numerical methods and error estimation for conservation laws on structured and unstructured meshes: Von Karman Institute Lecture Series 04-2003[R]. Brussels: Von Karman Institute, 2003: 1-65.
    [22] VENDITTI D A, DARMOFAL D L. Grid adaptation for functional outputs: Application to two-dimensional inviscid flows[J]. Journal of Computational Physics, 2002, 176(1): 40-69. doi: 10.1006/jcph.2001.6967
    [23] BALASUBRAMANIAN R, NEWMAN J C. Comparison of adjoint-based and feature-based grid adaptation for functional outputs[J]. International Journal for Numerical Methods in Fluids, 2007, 53(10): 1541-1569. doi: 10.1002/fld.1361
  • 加载中
图(11)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  16
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 录用日期:  2021-09-30
  • 网络出版日期:  2021-11-02
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答