留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于载体对消方法的腔体类目标散射特性研究

艾俊强 娄长玉 赵京城 张扬 李家碧

艾俊强,娄长玉,赵京城,等. 基于载体对消方法的腔体类目标散射特性研究[J]. 北京航空航天大学学报,2023,49(6):1270-1277 doi: 10.13700/j.bh.1001-5965.2021.0428
引用本文: 艾俊强,娄长玉,赵京城,等. 基于载体对消方法的腔体类目标散射特性研究[J]. 北京航空航天大学学报,2023,49(6):1270-1277 doi: 10.13700/j.bh.1001-5965.2021.0428
AI J Q,LOU C Y,ZHAO J C,et al. Scattering characteristics of cavity-like targets based on carrier-to-cancellation method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1270-1277 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0428
Citation: AI J Q,LOU C Y,ZHAO J C,et al. Scattering characteristics of cavity-like targets based on carrier-to-cancellation method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1270-1277 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0428

基于载体对消方法的腔体类目标散射特性研究

doi: 10.13700/j.bh.1001-5965.2021.0428
详细信息
    通讯作者:

    E-mail:zjccool@126.com

  • 中图分类号: V221+.3;TB553

Scattering characteristics of cavity-like targets based on carrier-to-cancellation method

More Information
  • 摘要:

    进气道等腔体类目标散射是隐身飞行器散射的重要组成部分,已有的腔体类目标散射研究并未给出装机后腔体类目标散射特性的结果。将载体对消技术应用于腔体模型的电磁散射计算中,可有效消除腔体外表面散射,获得更精确的腔体内部散射特性。构建了封闭口面和填充吸波材料的2种腔体模型,通过腔体模型的点频雷达散射截面(RCS)、一维像和二维像验证了载体对消技术的有效性和准确性。数值计算结果表明,入射电磁波在60°~90°角度范围内,腔体内部散射对腔体总散射的贡献较小,腔体外表面散射贡献较大,在±90°处相差30 dB以上。分析此角度范围的进气道等腔体类目标内部散射时,须有效消除腔体外表面影响。

     

  • 图 1  基本腔体计算模型示意图

    Figure 1.  Schematic diagram of basic cavity calculation model

    图 2  基于载体对消技术的封闭口面腔体模型示意图

    Figure 2.  Schematic diagram of closed mouth cavity model based on carrier cancellation technology

    图 3  工程中填充角锥形吸波材料腔体模型示意图

    Figure 3.  Schematic diagram of a cavity model filled with angle conical absorbing material in engineering

    图 4  基于载体对消技术的填充吸波材料腔体模型示意图

    Figure 4.  Schematic diagram of cavity model filled with absorbing material based on carrier cancellation technology

    图 5  不同频率下封闭腔体与腔体口面盖板载体对消的RCS对比结果

    Figure 5.  RCS comparison results of closed cavity and cavity surface carrier cancellation at different frequencies

    图 6  不同频率下金属腔体与腔体外表面载体对消的RCS对比结果

    Figure 6.  RCS comparison results between metal cavity and external surface carrier cancellation at different frequencies

    图 7  不同频率下填充吸波材料腔体模型载体对消的RCS对比结果

    Figure 7.  RCS comparison results of carrier cancellation of cavity model filled with absorbing material at different frequencies

    图 8  封闭口面腔体模型载体对消的一维像

    Figure 8.  One dimensional image cancellation of a closed cavity model

    图 9  填充吸波材料腔体模型载体对消的一维像

    Figure 9.  One dimensional image cancellation of cavity model carrier filled with absorbing material

    图 10  基于载体对消技术的封闭口面腔体模型的二维成像结果

    Figure 10.  Two-dimensional imaging results of cavity model with closed mouth based on carrier cancellation technique

    图 11  基于载体对消技术的内部填充吸波材料腔体模型的二维成像结果

    Figure 11.  Two-dimensional imaging results of cavity model of internal filled absorbing materials based on carrier cancellation technology

  • [1] 何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2006: 19-20.

    HE G Y, LU C C, HONG J C, et al. Calculation and measurement of electromagnetic scattering[M]. Beijing: Beihang University Press, 2006: 19-20(in Chinese).
    [2] SCHALKWYK R, SMIT J. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation[C]//International Conference on Radar Systems. Piscataway: IEEE Press, 2017: 1-6.
    [3] 袁云. 喷气式飞机发动机进气道的电磁散射研究及RCS计算[D]. 西安: 西北工业大学, 2001: 21-22.

    YUAN Y. Research on electromagnetic scattering and RCS calculation of jet aircraft engine inlet[D]. Xi’an: Northwest Polytechnic University, 2001: 21-22(in Chinese).
    [4] 柳宇. 飞机部件任意涂敷雷达吸波材料的设计与计算系统[D]. 北京: 北京航空航天大学, 1997 .

    LIU Y. Design and calculation system for arbitrarily coating radar absorbing materials on aircraft components[D]. Beijing: Beihang University, 1997(in Chinese).
    [5] 贾云峰. FEKO 在雷达散射截面计算中的应用[J]. 中国制造业信息化, 2008(2) : 59-61.

    JIA Y F. FEKO application in radar scattering cross section calculation[J]. Manufacture Information Engineering of China, 2008(2): 59-61(in Chinese) .
    [6] 蒋应富, 李建周, 许家栋, 等. 新型通用进气道类复杂腔体结构电磁散射计算方法[J]. 航空学报, 2009, 30(9): 1740-1744.

    JIANG Y F, LI J Z, XU J D, et al. Calculation method of electromagnetic scattering from complex cavity structure of new general inlet[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1740-1744(in Chinese).
    [7] 赵京城, 娄长玉, 李家碧, 等. 一种方形腔体目标散射特性及测量方法[J]. 北京航空航天大学学报, 2022, 48(12): 2415-2424.

    ZHAO J C, LOU C Y, LI J B, et al. Scattering characteristics and measurement method of a square cavity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2415-2424 (in Chinese) .
    [8] 汪中德, 汪茂光. 开口腔体的雷达散射截面计算方法[J]. 电波科学学报, 1994, 9(4): 45-51. doi: 10.13443/j.cjors.1994.04.008

    WANG Z D, WANG M G. Calculation method of radar scattering cross section of open cavity[J]. Journal of Radio Wave Science, 1994, 9(4): 45-51(in Chinese). doi: 10.13443/j.cjors.1994.04.008
    [9] 赵京城. 一种弱散射目标 RCS 测量方法: CN106443611A[P]. 2017-02-22.

    ZHAO J C. A kind of measurement method with weak scattering target RCS: CN106443611A[P]. 2017-02-22(in Chinese) .
    [10] 赵京城, 杨涛, 付鑫如, 等. 基于载体对消方法的缝隙小角域散射特性研究[J]. 北京航空航天大学学报, 2018 , 44 (7) : 1554-1561.

    ZHAO J C, YANG T, FU X R, et al. Scattering characteristics of slit based on carrier cancellation method in small angular domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (7): 1554-1561(in Chinese) .
    [11] 高旭, 杨硕, 柴建忠, 等. 基于矢量对消的缺陷类目标散射试验改进方法[J]. 北京航空航天大学学报, 2017 , 43 (7) : 1293-1299.

    GAO X, YANG S, CHAI J Z, et al. Improved test method based on vector cancellation for scattering characteristic of discontinuous target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017 , 43 (7): 1293-1299(in Chinese) .
    [12] 陈元植. 静电平衡原理与空腔导体内外两侧场强的独立性[J]. 大学物理, 1987, 1(4): 11-13. doi: 10.16854/j.cnki.1000-0712.1987.04.003

    CHEN Y Z. The principle of electrostatic balance and the independence of the field strength on both sides of the cavity conductor[J]. College Physics, 1987, 1(4): 11-13(in Chinese). doi: 10.16854/j.cnki.1000-0712.1987.04.003
    [13] SENIOR T B A, SARABANDI K, NATZKE J R. Natzke scattering by a narrow gap[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(7): 1102-1110. doi: 10.1109/8.55624
    [14] PARK T J, KANG S H, EOM H J. TE scattering from a slit in a thick conducting screen: Revisited[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(1): 112-114. doi: 10.1109/8.272309
    [15] SHENG X Q, YUNG E K N, CHAN C H, et al. Scattering from a large body with cracks and cavities by the fast and accurate finite-element boundary-integral method[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1153-1160. doi: 10.1109/8.884482
    [16] 曾学刚, 林为干, 阮成礼. 有耗目标的电磁相似性及矩形涂覆平板RCS的缩比关系[J]. 应用科学学报, 1993, 11(3): 213-218.

    ZENG X G, LIN W G, RUAN C L. The electromagnetic similitude of the object containing lossy materials and the RCS scaled-down relationships of the coated plate[J]. Journal of Applied Sciences, 1993, 11(3): 213-218(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  58
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 录用日期:  2021-09-10
  • 网络出版日期:  2021-09-15
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答