留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向双压电叠堆执行器并联控制实验研究

郑述峰 朱玉川 凌杰 刘昶 林文

郑述峰,朱玉川,凌杰,等. 轴向双压电叠堆执行器并联控制实验研究[J]. 北京航空航天大学学报,2023,49(6):1460-1470 doi: 10.13700/j.bh.1001-5965.2021.0432
引用本文: 郑述峰,朱玉川,凌杰,等. 轴向双压电叠堆执行器并联控制实验研究[J]. 北京航空航天大学学报,2023,49(6):1460-1470 doi: 10.13700/j.bh.1001-5965.2021.0432
ZHENG S F,ZHU Y C,LING J,et al. Experimental study on parallel control of axial dual-piezoelectric stack actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1460-1470 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0432
Citation: ZHENG S F,ZHU Y C,LING J,et al. Experimental study on parallel control of axial dual-piezoelectric stack actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1460-1470 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0432

轴向双压电叠堆执行器并联控制实验研究

doi: 10.13700/j.bh.1001-5965.2021.0432
基金项目: 国家自然科学基金(51975275);江苏省重点研发计划(BE2021034);江苏省自然科学基金(BK20210294)
详细信息
    通讯作者:

    E-mail:meeyczhu@nuaa.edu.cn

  • 中图分类号: TN384

Experimental study on parallel control of axial dual-piezoelectric stack actuator

Funds: National Natural Science Foundation of China (51975275); Science and Technology Planned Project of Jiangsu Province of China (BE2021034); Natural Science Foundation of Jiangsu Provice of China (BK20210294)
More Information
  • 摘要:

    双压电叠堆执行器相较于常规压电叠堆执行器具有位移放大功能,但受制于压电材料的迟滞非线性,位移精度难以满足需求。为减小双压电叠堆执行器的迟滞非线性,建立改进型PI (Prandtl-Ishlinskii)动态迟滞模型并进行参数辨识,提出一种双压电叠堆执行器输出位移分配策略与双压电叠堆并联控制方案,基于迟滞逆模型采用前馈-反馈复合控制进行实验研究,并采用不基于迟滞逆模型的线性自抗扰控制(LADRC)进行对比。基于Links-RT实时控制系统验证控制算法,实验结果表明:在1~200 Hz频率范围内,前馈-反馈复合控制效果最优,当跟踪信号频率为200 Hz时,均方根误差和最大绝对误差分别为0.454 4 μm和1.95 μm,远低于开环的4.369 6 μm和6.08 μm。

     

  • 图 1  轴向双压电叠堆执行器结构图

    Figure 1.  Structurale schematic of axiad dual-piezoelectric stack actuator

    图 2  轴向双压电叠堆执行器实物图

    Figure 2.  Axiad dual-piezoelectric stack actuator photograph

    图 3  Backlash算子

    Figure 3.  Backlash operator

    图 4  执行器输出位移测量实验平台

    Figure 4.  Experimental platform for actuator displacement measurement

    图 5  不同频率上压电叠堆实验与仿真对比

    Figure 5.  Comparison between experiment and simulation of upper piezoelectric stack at different frequencies

    图 6  不同频率下压电叠堆实验与仿真对比

    Figure 6.  Comparison between experiment and simulation of lower piezoelectric stack at different frequencies

    图 7  迟滞模型获取方法

    Figure 7.  Hysteresis model acquisition method

    图 8  前馈-反馈复合控制原理图

    Figure 8.  Feedforward-feedback compound control schematic

    图 9  不同频率下前馈-反馈复合控制滞环曲线

    Figure 9.  Hysteresis curve of feedforward-feedback compound control at different frequencies

    图 10  前馈-反馈复合控制评价参数对比

    Figure 10.  Comparison of evaluation parameters for feedforward-feedback compound control

    图 11  LADRC原理图

    Figure 11.  LADRC schematic

    图 12  LADRC滞环曲线

    Figure 12.  Hysteresis curve of LADRC

    图 13  LADRC评价参数对比

    Figure 13.  Comparison of LADRC evaluation parameters

    图 14  各控制算法评价参数对比

    Figure 14.  Evaluation parameters of each controller

    表  1  压电叠堆性能参数表

    Table  1.   Properties of piezoelectric stack

    参数数值
    尺寸/mm10×10×18
    质量 ms/kg0.014
    阻尼 cs/(N·s·m−1)1 200
    刚度 ks/(N·μm−1)180
    标称位移y/μm20
    阻断力/N3 600
    静电容量/nF7 500
    谐振频率/kHz83
    下载: 导出CSV

    表  2  参数辨识结果

    Table  2.   Parameter identification results

    参数数值
    v=1v=2
    w1v−0.014−0.109
    w2v0.0570.080
    w3v0.0400.041
    w4v00
    w5v0.0530.066
    w6v−0.099−0.229
    w7v0.1170.178
    w8v−0.0270.012
    w9v00
    w10v0.0140.031
    w11v−0.0190.099
    p1v0.721−0.477
    p2v1.5761.137
    p3v0.5000.571
    p4v−0.067−0.071
    p5v−0.684−0.616
    p6v0.1130.087
    下载: 导出CSV

    表  3  迟滞逆模型参数辨识结果

    Table  3.   Parameter identification results of hysteresis inverse model

    参数数值
    v=1v=2
    w1v_i−0.011−0.178
    w2v_i0.1070.148
    w3v_i0.0150.003
    w4v_i00
    w5v_i0.0440.057
    w6v_i−0.123−0.213
    w7v_i0.1430.203
    w8v_i−0.027−0.013
    w9v_i00
    w10v_i0.0130.018
    w11v_i−0.018−0.019
    p1v_i0.7850.153
    p2v_i−2.43−2.043
    p3v_i0.4150.426
    p4v_i−0.064−0.064
    p5v_i0.1330.067
    p6v_i0.2080.201
    下载: 导出CSV
  • [1] 李宇阳, 朱玉川, 李仁强, 等. 双压电叠堆驱动执行器率相关迟滞建模与分析[J]. 压电与声光, 2019, 41(2): 258-264.

    LI Y Y, ZHU Y C, LI R Q, et al. Modeling and analysis of rate-dependent hysteresis for dual-piezoelectric stack driven actuator[J]. Piezoelectrics & Acoustooptics, 2019, 41(2): 258-264(in Chinese).
    [2] LIU Y F, LI J, HU X H, et al. Modeling and control of piezoelectric inertia-friction actuators: Review and future research directions[J]. Mechanical Sciences, 2015, 6(2): 95-107. doi: 10.5194/ms-6-95-2015
    [3] 周淼磊, 杨志刚, 田彦涛, 等. 压电执行器非线性控制方法研究进展[J]. 压电与声光, 2007, 29(6): 656-659. doi: 10.3969/j.issn.1004-2474.2007.06.010

    ZHOU M L, YANG Z G, TIAN Y T, et al. The development on the nonlinear control method of piezoelectric actuator[J]. Piezoelectrics & Acoustooptics, 2007, 29(6): 656-659(in Chinese). doi: 10.3969/j.issn.1004-2474.2007.06.010
    [4] GE P, JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Transactions on Control Systems Technology, 1996, 4(3): 209-216. doi: 10.1109/87.491195
    [5] LING J, RAKOTONDRABE M, FENG Z, et al. A robust resonant controller for high-speed scanning of nanopositioners: Design and implementation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1116-1123. doi: 10.1109/TCST.2019.2899566
    [6] GU G Y, ZHU L M, SU C Y, et al. Modeling and control of piezo-actuated nanopositioning stages: A survey[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1): 313-332. doi: 10.1109/TASE.2014.2352364
    [7] GAO X H, LIU Y G. Research on control strategy in giant magnetostrictive actuator based on Lyapunov stability[J]. IEEE Access, 2019, 7: 77254-77260. doi: 10.1109/ACCESS.2019.2920853
    [8] LEE S H, OZER M B, ROYSTON T J. Piezoceramic hysteresis in the adaptive structural vibration control problem[J]. Journal of Intelligent Material Systems and Structures, 2002, 13(2-3): 117-124. doi: 10.1177/104538902761402512
    [9] MING M, FENG Z, LING J, et al. Hysteresis modelling and feedforward compensation of piezoelectric nanopositioning stage with a modified Bouc-Wen model[J]. Micro & Nano Letters, 2018, 13(8): 1170-1174.
    [10] MAYERGOYZ I D, FRIEDMAN G. Generalized preisach model of hysteresis[J]. IEEE Transactions on Magnetics, 1988, 24(1): 212-217. doi: 10.1109/20.43892
    [11] SHEN J C, JYWE W Y, CHIANG H K, et al. Precision tracking control of a piezoelectric-actuated system[J]. Precision Engineering, 2008, 32(2): 71-78. doi: 10.1016/j.precisioneng.2007.04.002
    [12] LI Z, ZHANG X Y, SU C Y, et al. Nonlinear control of systems preceded by preisach hysteresis description: A prescribed adaptive control approach[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 451-460.
    [13] AL JANAIDEH M, RAKOTONDRABE M. Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities[J]. Nonlinear Dynamics, 2021, 104(4): 3385-3405. doi: 10.1007/s11071-021-06460-w
    [14] 田雷, 陈俊杰, 崔玉国, 等. 基于PI迟滞模型的单压电变形镜开环控制[J]. 仪器仪表学报, 2017, 38(1): 136-142. doi: 10.3969/j.issn.0254-3087.2017.01.018

    TIAN L, CHEN J J, CUI Y G, et al. Open-loop control of unimorph piezoelectric deformable mirror based on PI hysteresis model[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 136-142(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.01.018
    [15] 贾高欣, 王贞艳. 压电陶瓷作动器的率相关迟滞建模与内模控制[J]. 压电与声光, 2019, 41(1): 130-134. doi: 10.11977/j.issn.1004-2474.2019.01.030

    JIA G X, WANG Z Y. Modeling of rate-dependent hysteresis and internal model control of piezoelectric ceramic actuators[J]. Piezoelectrics & Acoustooptics, 2019, 41(1): 130-134(in Chinese). doi: 10.11977/j.issn.1004-2474.2019.01.030
    [16] 黄卫清, 史小庆, 王寅. 菱形压电微位移放大机构的设计[J]. 光学 精密工程, 2015, 23(3): 803-809. doi: 10.3788/OPE.20152303.0803

    HUANG W Q, SHI X Q, WANG Y. Design of diamond piezoelectric micro displacement amplification mechanism[J]. Optics and Precision Engineering, 2015, 23(3): 803-809(in Chinese). doi: 10.3788/OPE.20152303.0803
    [17] 邰明皓, 朱玉川, 江裕雷, 等. 双压电二维叠堆执行器控制实验研究[J]. 压电与声光, 2021, 43(2): 254-259.

    TAI M H, ZHU Y C, JIANG Y L, et al. Experimental research on control of dual piezoelectric two-dimensional stack actuators[J]. Piezoelectrics & Acoustooptics, 2021, 43(2): 254-259(in Chinese).
    [18] 江裕雷, 朱玉川, 陈龙, 等. 径向双压电叠堆执行器建模与实验研究[J]. 压电与声光, 2021, 43(1): 45-50.

    JIANG Y L, ZHU Y C, CHEN L, et al. Modeling and experimental study on radial dual-piezoelectric stack actuator[J]. Piezoelectrics & Acoustooptics, 2021, 43(1): 45-50(in Chinese).
    [19] KUHNEN K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4): 407-418. doi: 10.3166/ejc.9.407-418
    [20] 田雷. 基于PI迟滞模型的压电变形镜控制技术研究[D]. 宁波: 宁波大学, 2017: 14-16.

    TIAN L. Control of piezoelectric deformable mirror based on PI hysteresis model[D]. Ningbo: Ningbo University, 2017: 14-16 (in Chinese).
    [21] GAN J Q, ZHANG X M, WU H. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators[J]. The Review of Scientific Instruments, 2016, 87(3): 035002. doi: 10.1063/1.4941941
    [22] GAN J Q, ZHANG X M. Modeling of rate-dependent hysteresis in piezoelectric actuators based on a modified Prandtl-Ishlinskii model[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(4): 557-565. doi: 10.3233/JAE-150070
    [23] 郑军辉, 崔玉国, 蔡成波, 等. 串联死区算子的压电微夹钳PI迟滞模型[J]. 压电与声光, 2015, 37(4): 650-654.

    ZHENG J H, CUI Y G, CAI C B, et al. Research on PI hysteresis model with dead-zero operator of piezoelectric micro-gripper[J]. Piezoelectrics & Acoustooptics, 2015, 37(4): 650-654(in Chinese).
    [24] 雷军委, 晋玉强, 王宏. 基于Lyapunov与混沌激励的自适应参数辨识[M]. 成都: 西南交通大学出版社, 2016: 1-5.

    LEI J W, JIN Y Q, WANG H. Adaptive parameters identification based on Lyapunov function and chaotic excitation[M]. Chengdu: Southwest Jiaotong University Press, 2016: 1-5 (in Chinese).
    [25] 顾寒烈. 压电驱动型主动隔振技术研究[D]. 南京: 南京航空航天大学, 2018: 41-49.

    GU H L. Research on active vibration isolation with piezoelectric actuators[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 41-49 (in Chinese) .
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  70
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 录用日期:  2021-10-29
  • 网络出版日期:  2021-11-09
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答