留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动响应数据的大柔性机翼结构降阶方法

谢长川 张铎耀 安朝

谢长川,张铎耀,安朝. 基于动响应数据的大柔性机翼结构降阶方法[J]. 北京航空航天大学学报,2023,49(6):1319-1330 doi: 10.13700/j.bh.1001-5965.2021.0439
引用本文: 谢长川,张铎耀,安朝. 基于动响应数据的大柔性机翼结构降阶方法[J]. 北京航空航天大学学报,2023,49(6):1319-1330 doi: 10.13700/j.bh.1001-5965.2021.0439
XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0439
Citation: XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0439

基于动响应数据的大柔性机翼结构降阶方法

doi: 10.13700/j.bh.1001-5965.2021.0439
详细信息
    通讯作者:

    E-mail:ac@buaa.edu.cn

  • 中图分类号: V211.47;V214.1

Reduced order method for large flexible wing structure based on dynamic response data

More Information
  • 摘要:

    现代飞行器机翼柔性大,几何非线性问题不可忽略。基于动响应数据样本,基于谐波平衡和快速Fourier变换对结构动力学方程中的非线性刚度系数进行识别,建立非线性结构降阶模型。引入位移残量基模态,进行柔性机翼大变形的位移恢复。结合曲面涡格法和三维曲面插值方法搭建大柔性机翼几何非线性气动弹性分析框架。相比传统基于静力学数据回归分析的几何非线性结构降阶方法,该方法需要的载荷集数目小,提高了分析效率。计算结果表明:与非线性有限元方法相比,非线性结构降阶模型准确度高,能够有效应用于大柔性机翼几何非线性静气动弹性分析,而传统的线性计算方法与非线性方法相比结果差异较大。

     

  • 图 1  参数辨识流程

    Figure 1.  Flowchart of parameter identification

    图 2  弯曲大变形导致的展向位移

    Figure 2.  Spanwise displacement induced by large bending deformation

    图 3  位移恢复流程

    Figure 3.  Flowchart of displacement recovery

    图 4  机翼涡格划分

    Figure 4.  Vortex lattice division of wing

    图 5  涡环布置情况

    Figure 5.  Vortex lattice arrangement

    图 6  大柔性机翼静气动弹性分析流程

    Figure 6.  Static aeroelastic analysis flowchart of large flexible wing

    图 7  有限元模型

    Figure 7.  Finite element model

    图 8  前六阶模态振型图

    Figure 8.  Vibration mode diagram of first six modes

    图 9  垂直一弯模态的广义力功率谱密度及方波输入

    Figure 9.  Power spectral density and square wave input of generalized force of 1st bending mode

    图 10  翼尖处垂直位移响应

    Figure 10.  Response of tip vertical displacement

    图 11  不同来流风速下的主梁垂直位移

    Figure 11.  Vertical displacement of main beam with different flow velocities

    图 12  不同来流风速下的主梁展向位移

    Figure 12.  Spanwise displacement of main beam with different flow velocities

    图 13  不同来流风速下的翼尖垂直位移

    Figure 13.  Vertical displacement of wing tip with different flow velocities

    图 14  不同来流风速下的翼尖展向位移

    Figure 14.  Spanwise displacement of wing tip with different flow velocities

    图 15  不同来流风速下静气动弹性垂直位移

    Figure 15.  Static aeroelastic vertical displacement with different flow velocities

    图 16  不同来流风速下的静气动弹性展向位移

    Figure 16.  Static aeroelastic spanwise displacement with different flow velocities

    图 17  不同来流风速下的静气动弹性扭转角

    Figure 17.  Static aeroelastic twist with different flow velocities

    图 18  不同来流风速下的翼尖静气动弹性位移

    Figure 18.  Static aeroelastic tip displacement with different flow velocities

    表  1  机翼模型设计参数

    Table  1.   Design parameters of wing model

    模型参数取值
    半翼展/mm1000
    弦长/mm100
    弹性轴位置50%机翼弦长
    主梁密度/ (kg·m−3)7.75×103
    主梁截面形状35 mm×1.5 mm(矩形)
    配重杆长度/mm200
    配重杆质量/g62
    下载: 导出CSV

    表  2  前六阶模态

    Table  2.   First six modes

    模态编号模态振型模态频率/Hz
    1垂直一弯1.179
    2垂直二弯7.724
    3垂直三弯22.19
    4一阶扭转22.95
    5水平一弯27.47
    6垂直四弯44.27
    下载: 导出CSV

    表  3  翼尖垂直位移对比

    Table  3.   Comparison of tip vertical displacement

    来流风速/(m·s−1)垂直位移/mm相对误差/%
    非线性有限元非线性结构降阶模型
    1053.453.30.2
    16153.7151.81.2
    22313.0304.32.8
    下载: 导出CSV

    表  4  静气动弹性垂直位移对比

    Table  4.   Comparison of static aeroelastic vertical displacement

    来流风速/
    (m·s−1)
    垂直位移/mm
    非线性
    有限元
    非线性结构
    降阶模型
    线性气动
    弹性分析
    1053.453.3 54.3
    16153.7149.9164.0
    22313.0296.6418.2
    下载: 导出CSV

    表  5  静气动弹性展向位移对比

    Table  5.   Comparison of static aeroelastic spanwise displacement

    来流风速/
    (m·s−1)
    展向位移/mm
    非线性有限元非线性结构降阶模型线性气动弹性分析
    10−1.6−1.70
    16−13.6−13.70
    22−57.9−53.50
    下载: 导出CSV

    表  6  静气动弹性扭转角对比

    Table  6.   Comparison of static aeroelastic twist

    来流风速/
    (m·s−1)
    扭转角/(°)
    非线性有限元非线性结构降阶模型线性气动弹性分析
    100.3430.3410.348
    160.9900.9391.045
    222.0781.9172.645
    下载: 导出CSV
  • [1] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12): 1087-1090. doi: 10.13700/j.bh.1001-5965.2003.12.007

    XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12): 1087-1090(in Chinese). doi: 10.13700/j.bh.1001-5965.2003.12.007
    [2] HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA-TN-D-7818[R]. Washington, D. C. : NASA, 1974.
    [3] HODGES D H. Review of composite rotor blade modeling[J]. AIAA Journal, 1990, 28(3): 561-565. doi: 10.2514/3.10430
    [4] SIMO J C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70. doi: 10.1016/0045-7825(85)90050-7
    [5] CASTELLANI M, COOPER J E, LEMMENS Y. Nonlinear static aeroelasticity of high aspect ratio wing aircraft by FEM and multibody methods[C]//15th Dynamics Specialists Conference. Reston: AIAA, 2016.
    [6] MIGNOLET M P, PRZEKOP A, RIZZI S A, et al. A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures[J]. Journal of Sound and Vibration, 2013, 332(10): 2437-2460. doi: 10.1016/j.jsv.2012.10.017
    [7] MCEWAN M I, WRIGHT J R, COOPER J E, et al. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation[J]. Journal of Sound and Vibration, 2001, 243(4): 601-624. doi: 10.1006/jsvi.2000.3434
    [8] MIGNOLET M P, SOIZE C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3951-3963. doi: 10.1016/j.cma.2008.03.032
    [9] HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1145-1163. doi: 10.1016/j.jsv.2004.08.036
    [10] HOLLKAMP J J, GORDON R W. Reduced-order models for nonlinear response prediction: Implicit condensation and expansion[J]. Journal of Sound and Vibration, 2008, 318(4-5): 1139-1153. doi: 10.1016/j.jsv.2008.04.035
    [11] GUO X, PRZEKOP A. Energy-based modal basis selection procedures for reduced-order nonlinear simulation[C]//Proceeding of the 51st Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2010.
    [12] HARMIN M Y, COOPER J E. Aeroelastic behavior of a wing including geometric nonlinearities[J]. The Aeronautical Journal, 2011, 115(1174): 767-777. doi: 10.1017/S0001924000006515
    [13] XIE C C, AN C, LIU Y, et al. Static aeroelastic analysis including geometric nonlinearities based on reduced order model[J]. Chinese Journal of Aeronautics, 2017, 30(2): 638-650. doi: 10.1016/j.cja.2016.12.031
    [14] AN C, YANG C, XIE C C, et al. Gust load alleviation including geometric nonlinearities based on dynamic linearization of structural ROM[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-20.
    [15] MEDEIROS R R, CESNIK C E S, COETZEE E B. Computational aeroelasticity using modal-based structural nonlinear analysis[J]. AIAA Journal, 2020, 58(1): 362-371. doi: 10.2514/1.J058593
    [16] 张骥. 一种基于FFT计算离散小波变换的方法[J]. 计算机与数字工程, 2009, 37(10): 29-31. doi: 10.3969/j.issn.1672-9722.2009.10.009

    ZHANG J. Discrete wavelet transform algorithm-based on fast Fourier transform algorithm[J]. Computer & Digital Engineering, 2009, 37(10): 29-31(in Chinese). doi: 10.3969/j.issn.1672-9722.2009.10.009
    [17] 窦苏广, 叶敏. 基于谐波平衡的参激系统非线性参数识别频域法[J]. 振动与冲击, 2009, 28(12): 123-127. doi: 10.3969/j.issn.1000-3835.2009.12.030

    DOU S G, YE M. Nonlinear identification in frequency domain for parametric excitation system based on harmonic balance principle[J]. Journal of Vibration and Shock, 2009, 28(12): 123-127(in Chinese). doi: 10.3969/j.issn.1000-3835.2009.12.030
    [18] IBRAHIM S R. An approach for reducing computational requirements in modal identification[J]. AIAA Journal, 1986, 24(10): 1725-1727. doi: 10.2514/3.9516
    [19] 殷有泉. 非线性有限元基础[M]. 北京: 北京大学出版社, 2007: 272-273.

    YIN Y Q. Nonlinear finite element foundation[M]. Beijing: Peking University Press, 2007: 272-273(in Chinese).
    [20] 安朝. 大柔性飞行器大柔性飞行器结构建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2020.

    AN C. Structure modeling methodology and aeroelastic analysis of large flexible aircraft[D]. Beijing: Beihang University, 2020(in Chinese).
    [21] 刘燚. 大柔性飞机气动弹性稳定性及动响应分析[D]. 北京: 北京航空航天大学, 2016.

    LIU Y. Aeroelastic stability and dynamic response analysis of large flexible aircraft [D]. Beijing: Beihang University, 2016 (in Chinese).
    [22] 刘燚, 杨澜, 谢长川. 基于曲面涡格法的柔性飞机静气动弹性分析[J]. 工程力学, 2018, 35(2): 249-256.

    LIU Y, YANG L, XIE C C. Study on the static aeroelasticity for flexible aircrat based on non-planar vortex lattice method[J]. Engineering Mechanics, 2018, 35(2): 249-256(in Chinese).
    [23] XIE C C, YANG C. Surface splines generalization and large deflection interpolation[J]. Journal of Aircraft, 2007, 44(3): 1024-1026. doi: 10.2514/1.24571
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  52
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-14
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答