留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波重构的天平动态特性数据处理技术

张峻宾 许晓斌 王雄 蒋万秋 舒海峰 孙鹏

张峻宾,许晓斌,王雄,等. 基于小波重构的天平动态特性数据处理技术[J]. 北京航空航天大学学报,2023,49(6):1362-1371 doi: 10.13700/j.bh.1001-5965.2021.0441
引用本文: 张峻宾,许晓斌,王雄,等. 基于小波重构的天平动态特性数据处理技术[J]. 北京航空航天大学学报,2023,49(6):1362-1371 doi: 10.13700/j.bh.1001-5965.2021.0441
ZHANG J B,XU X B,WANG X,et al. Data processing technology of balanced dynamic characteristics based on wavelet reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1362-1371 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0441
Citation: ZHANG J B,XU X B,WANG X,et al. Data processing technology of balanced dynamic characteristics based on wavelet reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1362-1371 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0441

基于小波重构的天平动态特性数据处理技术

doi: 10.13700/j.bh.1001-5965.2021.0441
基金项目: 国家自然科学基金(61601495);技术基础项目(KT-JSJC-2021-028)
详细信息
    通讯作者:

    E-mail:zhangjunbin@alu.uestc.edu.cn

  • 中图分类号: V221.74

Data processing technology of balanced dynamic characteristics based on wavelet reconstruction

Funds: National Natural Science Foundation of China (61601495); Technical Foundation Project (KT-JSJC-2021-028))
More Information
  • 摘要:

    针对风洞试验模型会产生受迫振动,测力天平测量的数据是模型受迫振动和受到气动力的混叠影响测力数据精度的问题,提出基于小波重构的天平动态特性数据处理技术。通过在模型上安装加速度计敲击模型获取受迫振动数据,再对受迫振动数据通过快速傅里叶变换(FFT)分析确定滤波频率阈值,采用小波重构技术实现滤波。通过投影公式计算动态补偿系数,通过补偿系数对天平测量的气动力实现补偿。试验数据分析发现,基于小波重构的天平动态特性数据处理技术,可得到固定的补偿系数,在试验环境中,干扰信号最大能衰减到15.69%,具有重要的工程应用价值。

     

  • 图 1  小波分解基本原理

    Figure 1.  Basic theory of wavelet decomposition

    图 2  第34车手动法向激励振动数据FFT分析

    Figure 2.  FFT analysis of vibration data of manual normal force applied in the 34th test

    图 3  第14和第16通道法向加速度计测量值

    Figure 3.  Normal accelerometer measuremer in channel 14th and 16th

    图 4  第14和第16通道法向加速度计阻尼部分放大

    Figure 4.  Enlarged view of damping data of normal acceleration in channel 14th and 16th

    图 5  迎角α=0°时激振不同补偿系数的补偿效果

    Figure 5.  Compensation effect of different compensation coefficients with angle of attack α=0°

    图 6  第1次激振补偿系数为−0.005411的补偿结果局部放大

    Figure 6.  Enlarged view of compensation effect with compensation coefficient being −0.005411 in firet test

    图 7  法向力时序数据均值遍历

    Figure 7.  Mean traversal of normal force time series data

    图 8  第2次试验施加法向力60 N时补偿系数

    Figure 8.  Compensation coefficients in second test with normal external force being 60 N

    图 9  第101车不同补偿系数对比

    Figure 9.  Comparison of different compensation coefficients of the 101th text

    图 10  第101车和第111车原始数据相位差对比

    Figure 10.  Phase difference comparison of original data between the 101th and 111th text

    表  1  原始数据采集信息

    Table  1.   Information of original data collection

    类别通道编号天平通道自由度
    天平2M4侧向
    天平3M3侧向
    天平4M1法向
    天平5MA轴向
    天平6M2法向
    天平7MX1扭转
    天平8MX2扭转
    加速度计14加速度计2法向
    加速度计15加速度计1X侧向
    加速度计16加速度计1Y法向
    加速度计17加速度计1Z轴向
    加速度计18加速度计3X侧向
    加速度计19加速度计3Y轴向
    加速度计20加速度计3Z法向
    下载: 导出CSV

    表  2  第1次试验车状态

    Table  2.   Train status of the first test

    迎角α/(°)法向力/N车编号/车
    0601~4
    0505
    0306
    5607~10
    55011
    53012
    106013~16
    105017
    103018
    −56019~22
    −55023
    −53024
    −106025~28
    −105029
    −103030
    −13~+136033
    0*34
    −13~+13031、37、39
    +13~−13038、40
     注:*表示手动法向激励。
    下载: 导出CSV

    表  3  第2次试验车状态

    Table  3.   Train status of the second test

    迎角α/(°)法向力/N车编号/车
    060101~115
    560116~130
    下载: 导出CSV

    表  4  第1次试验施加法向力补偿系数

    Table  4.   Normal force compensation coefficient was applied in the first test

    迎角α/(°)法向力/N第14通道
    补偿系数
    第16通道
    补偿系数
    补偿后
    比值
    0600.012824−0.005411−0.421925
    0600.010763−0.004500−0.418090
    0600.010327−0.004366−0.422540
    0600.005670−0.002443−0.431073
    0500.012531−0.005306−0.423713
    0300.011855−0.005075−0.427627
    5600.004661−0.002044−0.437842
    5600.006692−0.002880−0.430394
    5600.007321−0.003130−0.427911
    5600.012919−0.005445−0.421602
    5500.001888−0.000865−0.458178
    5300.008786−0.003789−0.431455
    10600.008082−0.003429−0.424709
    10600.007105−0.003047−0.428880
    10600.008364−0.003548−0.424486
    10600.007097−0.002997−0.423050
    10500.012182−0.005118−0.419921
    10300.010568−0.004592−0.434781
    −5600.004229−0.001772−0.418425
    −5600.004980−0.002097−0.421170
    −5600.004763−0.002036−0.427668
    −5600.007867−0.003330−0.423102
    −5500.003732−0.001593−0.426389
    −5300.004905−0.002142−0.436893
    −10600.010633−0.004510−0.424398
    −10600.005843−0.002507−0.429957
    −10600.009871−0.004162−0.422217
    −10600.005725−0.002392−0.417780
    −10500.003583−0.001508−0.420557
    −10300.008918−0.003736−0.418899
    下载: 导出CSV

    表  5  第1次试验施加法向力补偿系数平均值

    Table  5.   Normal force mean value of compensation coefficient was applied in the first test

    迎角α/(°)第14通道补偿系数均值第16通道补偿系数均值
    00.01130−0.00476
    50.00622−0.00268
    100.00766−0.00326
    −50.00466−0.00197
    −100.00802−0.00339
    下载: 导出CSV

    表  6  第2次试验施加法向力2种情形下的补偿系数

    Table  6.   Compensation coefficients under two conditions of appluing normal force in the second text

    迎角α/(°)试验车编号/车组合前后同时补偿系数(情形1)组合后补偿系数(情形2)
    组合前M1补偿系数组合前M2补偿系数组合后补偿系数
    01010.000819−0.0048660.000737−0.00484
    1020.000801−0.0028360.000815−0.00292
    1030.000890−0.0045080.000780−0.00449
    1040.000564−0.0034440.000812−0.00329
    1050.000126−0.0018480.000883−0.00124
    1060.000312−0.0011820.000880−0.00077
    1070.000334−0.0007150.000504−0.00072
    1080.000531−0.0038940.000529−0.00396
    1090.000178−0.0006920.000510−0.00053
    1100.000820−0.0040080.000532−0.00435
    1110.000238−0.0017970.000519−0.00166
    1120.000848−0.0032590.000592−0.00360
    1130.000395−0.0017960.000583−0.00175
    1140.000317−0.0020190.000563−0.00192
    1150.000324−0.0022290.000592−0.00209
    51160.000313−0.0018170.000574−0.00171
    1170.000129−0.0007340.000575−0.00045
    1180.000544−0.0034130.000606−0.00344
    1190.000571−0.0016970.000631−0.00179
    1200.000301−0.0012810.000644−0.00109
    1210.000520−0.0022200.000634−0.00223
    1220.000653−0.0034650.000608−0.00360
    1230.000353−0.0020220.000587−0.00193
    1240.000502−0.0025650.000561−0.00262
    1250.000382−0.0007100.000613−0.00064
    1260.000613−0.0025820.000628−0.00270
    1270.0002530.0001680.0006560.00039
    1280.000497−0.0031340.000602−0.00313
    1290.000968−0.0051450.000643−0.00541
    1300.000831−0.0041150.000636−0.00437
    下载: 导出CSV

    表  7  第2次试验施加法向力2种情形下的补偿系数平均值

    Table  7.   Mean value of compensation coefficients under two conditions of applying normal force in the second test

    迎角α/(°)组合前后同时偿系数均值(情形1)组合后补偿系数均值(情形2)
    组合前M1补偿系数组合前M2补偿系数组合后补偿系数
    00.000500−0.0026060.000655−0.002444
    50.000513−0.0024930.000610−0.002390
    下载: 导出CSV

    表  8  第2次试验施加法向力加速度相位移动后的补偿系数(第1组)

    Table  8.   Compensation coefficient after normal application of acceleration phase shift of external force in the second text (the first group)

    试验车
    编号/车
    与101车比较 相位差点数移动数量相位对齐时
    补偿系数
    校正值校差值−20−19−18−17−16−15−14−13−12−110123
    101 0 0 0.00291 −0.00598 0.00100 0.00556 −0.00253 −0.00530 0.00189 0.00573 0.00097 −0.00479 −0.00484 −0.00526 −0.00549 −0.00544 −0.00484
    102 0 −16 −0.00497 −0.00132 0.00591 −0.00147 −0.00549 0.00191 0.00560 −0.00013 −0.00548 −0.00355 −0.00292 −0.00223 −0.00121 0.00040 −0.00549
    103 3 1 0.00361 −0.00587 0.00021 0.00583 −0.00180 −0.00562 0.00114 0.00581 0.00174 −0.00435 −0.00449 −0.00502 −0.00539 −0.00556 −0.00556
    104 0 −14 −0.00475 −0.00177 0.00597 −0.00104 −0.00567 0.00149 0.00573 0.00031 −0.00539 −0.00391 −0.00329 −0.00264 −0.00165 −0.00005 0.00573
    105 0 −18 −0.00585 0.00077 0.00542 −0.00334 −0.00450 0.00367 0.00482 −0.00209 −0.00568 −0.00184 −0.00124 −0.00040 0.00068 0.00223 0.00542
    106 0 −19 −0.00600 0.00132 0.00521 −0.00380 −0.00416 0.00409 0.00454 −0.00258 −0.00564 −0.00135 −0.00077 0.00010 0.00117 0.00268 0.00132
    107 0 −20 −0.00600 0.00144 0.00514 −0.00388 −0.00407 0.00416 0.00447 −0.00267 −0.00561 −0.00125 −0.00072 0.00019 0.00125 0.00275 −0.00600
    108 0 −12 −0.00403 −0.00270 0.00585 −0.00004 −0.00583 0.00050 0.00577 0.00129 −0.00494 −0.00455 −0.00396 −0.00344 −0.00253 −0.00101 −0.00494
    109 0 −20 −0.00603 0.00165 0.00503 −0.00403 −0.00392 0.00430 0.00433 −0.00285 −0.00557 −0.00105 −0.00053 0.00037 0.00144 0.00291 −0.00603
    110 0 −12 −0.00360 −0.00323 0.00576 0.00053 −0.00590 −0.00006 0.00577 0.00184 −0.00467 −0.00489 −0.00435 −0.00387 −0.00302 −0.00155 −0.00467
    注:①红色是经过移动相位差对应的补偿系数,蓝色是经过移动相位补偿系数异常标注,以上扣除了异常127车;②校正值代表经过自动计算的相位差点数,校差值代表人工对校正值的修正,表中的加粗的数据代表经过校正值后的补偿系数。
    下载: 导出CSV

    表  9  第2次试验施加法向力加速度相位移动后的补偿系数(第2组)

    Table  9.   Compensation coefficient after normal application of acceleration phase shift of external force in the second test (the second group)

    试验车
    编号/车
    与101车比较 相位差点数移动数量相位对齐时
    补偿系数
    校正值校差值−20−19−18−17−16−15−14−13−12−110123
    111 0 −17 −0.00578 0.00039 0.00559 −0.00303 −0.00476 0.00337 0.00505 −0.00171 −0.00571 −0.00222 −0.00166 −0.00082 0.00025 0.00183 −0.00303
    112 0 −14 −0.00446 −0.00213 0.00591 −0.00064 −0.00572 0.00108 0.00573 0.00072 −0.00518 −0.00416 −0.00360 −0.00298 −0.00203 −0.00047 0.00573
    113 0 −18 −0.00576 0.00027 0.00564 −0.00294 −0.00483 0.00328 0.00511 −0.00161 −0.00572 −0.00232 −0.00175 −0.00092 0.00015 0.00174 0.00564
    114 0 −18 −0.00569 0.00010 0.00570 −0.00279 −0.00493 0.00314 0.00519 −0.00145 −0.00571 −0.00248 −0.00192 −0.00109 −0.00001 0.00159 0.00570
    115 −15 −17 −0.00561 −0.00014 0.00576 −0.00257 −0.00505 0.00294 0.00528 −0.00122 −0.00570 −0.00267 −0.00209 −0.00130 −0.00023 0.00137 0.00294
    116 0 −17 −0.00579 0.00036 0.00563 −0.00301 −0.00480 0.00336 0.00509 −0.00169 −0.00573 −0.00227 −0.00171 −0.00086 0.00022 0.00181 −0.00301
    117 0 −19 −0.00605 0.00174 0.00498 −0.00411 −0.00386 0.00437 0.00428 −0.00292 −0.00556 −0.00098 −0.00045 0.00045 0.00150 0.00298 0.00174
    118 0 −13 −0.00467 −0.00190 0.00597 −0.00090 −0.00571 0.00134 0.00575 0.00047 −0.00533 −0.00403 −0.00344 −0.00280 −0.00182 −0.00023 0.00047
    119 0 −18 −0.00570 0.00021 0.00563 −0.00287 −0.00484 0.00323 0.00511 −0.00156 −0.00570 −0.00236 −0.00179 −0.00096 0.00011 0.00170 0.00563
    120 −18 −19 −0.00595 0.00101 0.00535 −0.00355 −0.00438 0.00386 0.00473 −0.00229 −0.00569 −0.00166 −0.00109 −0.00023 0.00085 0.00239 0.00535
    注:①红色是经过移动相位差对应的补偿系数,蓝色是经过移动相位补偿系数异常标注,以上扣除了异常127车;②校正值代表经过自动计算的相位差点数,校差值代表人工对校正值的修正,表中的加粗的数据代表经过校正值后的补偿系数。
    下载: 导出CSV

    表  10  第2次试验施加法向力加速度相位移动后的补偿系数(第3组)

    Table  10.   Compensation coefficient after normal application of acceleration phase shift of external force in the second test (the third group)

    试验车
    编号/车
    与101车比较 相位差点数移动数量相位对齐时
    补偿系数
    校正值校差值−20−19−18−17−16−15−14−13−12−110123
    121 −15 −17 −0.00553 −0.00033 0.00580 −0.00240 −0.00513 0.00278 0.00535 −0.00105 −0.00569 −0.00283 −0.00223 −0.00145 −0.00039 0.00121 0.00278
    122 0 −14 −0.00454 −0.00210 0.00597 −0.00069 −0.00577 0.00114 0.00578 0.00068 −0.00525 −0.00418 −0.00360 −0.00298 −0.00202 −0.00044 0.00578
    123 −16 −17 −0.00569 0.00008 0.00571 −0.00277 −0.00495 0.00313 0.00521 −0.00143 −0.00573 −0.00251 −0.00193 −0.00111 −0.00004 0.00157 −0.00495
    124 0 −16 −0.00531 −0.00080 0.00590 −0.00197 −0.00535 0.00237 0.00552 −0.00060 −0.00562 −0.00322 −0.00262 −0.00188 −0.00084 0.00078 −0.00535
    125 0 −20 −0.00600 0.00153 0.00506 −0.00393 −0.00398 0.00420 0.00438 −0.00272 −0.00557 −0.00117 −0.00064 0.00024 0.00130 0.00278 −0.00600
    126 0 −16 −0.00528 −0.00088 0.00592 −0.00191 −0.00539 0.00231 0.00555 −0.00053 −0.00561 −0.00328 −0.00270 −0.00194 −0.00090 0.00072 −0.00539
    128 −13 −15 −0.00494 −0.00148 0.00596 −0.00132 −0.00559 0.00175 0.00568 0.00006 −0.00546 −0.00372 −0.00313 −0.00245 −0.00144 0.00017 0.00006
    129 2 −5 0.00063 −0.00584 0.00318 0.00439 −0.00436 −0.00400 0.00382 0.00506 −0.00121 −0.00561 −0.00541 −0.00554 −0.00537 −0.00473 −0.00537
    130 0 −12 −0.00360 −0.00324 0.00576 0.00055 −0.00590 −0.00008 0.00577 0.00186 −0.00466 −0.00490 −0.00437 −0.00388 −0.00304 −0.00157 −0.00466
    注:①红色是经过移动相位差对应的补偿系数,蓝色是经过移动相位补偿系数异常标注,以上扣除了异常127车;②校正值代表经过自动计算的相位差点数,校差值代表人工对校正值的修正,表中的加粗的数据代表经过校正值后的补偿系数。
    下载: 导出CSV
  • [1] 史玉杰, 黄勇, 田正波. 小展弦比飞翼布局高速标模测力天平研制[J]. 实验流体力学, 2015, 29(5): 50-54.

    SHI Y J, HUANG Y, TIAN Z B. Strain gauge balance development for force test on small aspect ratio flying wing high speed standard model[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 50-54(in Chinese).
    [2] 罗华云, 赖传兴, 王月贵, 等. 喷管模型试验器六分量天平校准技术[J]. 航空动力学报, 2013, 28(1): 67-73.

    LUO H Y, LAI C X, WANG Y G, et al. Six-component balance calibration technology for nozzle model testing facility[J]. Journal of Aerospace Power, 2013, 28(1): 67-73(in Chinese).
    [3] 吕金洲, 张小庆, 陈光雄, 等. 基于惯性补偿的脉冲风洞测力天平瞬态研究[J]. 振动与冲击, 2018, 37(2): 216-222.

    LV J Z, ZHANG X Q, CHEN G X, et al. Transient simulation for dynamic output of force measuring balance in animpulse combustion wind tunnel based on inertia compensation[J]. Journal of Vibration and Shock, 2018, 37(2): 216-222(in Chinese).
    [4] 王锋, 武龙, 吴东升, 等. 脉冲风洞天平短时振荡测力数据稳态值提取的优化识别方法[J]. 振动与冲击, 2018, 37(8): 153-158.

    WANG F, WU L, WU D S, et al. An optimization method of recovering steady-state value from short-time oscillatory signal of force balance for impulse tunnel[J]. Journal of Vibration and Shock, 2018, 37(8): 153-158(in Chinese).
    [5] 徐科军, 杨双龙, 张进, 等. 杆式风洞应变天平动态实验、建模与补偿[J]. 仪器仪表学报, 2009, 30(10): 2123-2130.

    XU K J, YANG S L, ZHANG J, et al. Dynamic experiment, modeling and compensation of bar-shaped strain gauge balance for wind tunnel[J]. Chinese Journal of Scientific Instrument, 2009, 30(10): 2123-2130(in Chinese).
    [6] 郭晨曦, 郝新红, 栗苹,等. 毫米波调频引信的优化二维FFT信号处理算法[J]. 北京航空航天大学学报, 2020, 46(1): 220-228.

    GUO C X, HAO X H, LI P, et al. Optimized two-dimensional FFT signal processing algorithm for millimeter-wave FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 220-228(in Chinese).
    [7] RENE DE JESUS R T. Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1291-1300. doi: 10.1109/TII.2016.2603968
    [8] SOBIA B, USMAN A, HAFIZ M A, et al. Closed-form BER expression for Fourier and wavelet transform-based pulse-shaped data in downlink NOMA[J]. IEEE Communications Letters, 2019, 23(4): 592-595. doi: 10.1109/LCOMM.2019.2903083
    [9] ZHOU Q G, CHEN D. Improving wavelet reconstruction algorithm to achieve comprehensive application of thermal infrared remote sensing data from TM and MODIS[J]. High Technology Letters, 2015, 21(2): 224-230.
    [10] KEYLOCK C J, SINGH K, GEORGIOU E F. The complexity of gravel bed river topography examined with gradual wavelet reconstruction[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3): 682-700. doi: 10.1002/2013JF002999
    [11] 吴央, 袁运能. 基于小波包分解和FCM聚类的纹理图像分割方法[J]. 北京航空航天大学学报, 2008, 34(5): 572-575.

    WU Y, YUAN Y N. Texture image segmentation method based on wavelet packet transform and FCM clustring[J], Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5): 572-575 (in Chinese).
    [12] LIU W X, WANG Y J, LIU X, et al. Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction[J]. Journal of Central South University, 2016, 23(11): 2883-2895. doi: 10.1007/s11771-016-3352-1
    [13] LEMING Q, PARTHA S R, PHIL D A. Wavelet reconstruction of nonuniformly sampled signals[J]. IEEE Signal Processing Letters, 2009, 16(2): 73-76.
    [14] 陈浩, 郭军海, 齐巍. 基于经验小波变换的目标加速度估计算法[J]. 北京航空航天大学学报, 2015, 41(1): 154-159.

    CHEN H, GUO J H, QI W. Estimation of target’s acceleration based on empirical wavelet transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 154-159(in Chinese).
    [15] JEON Y J, CHOI D C, LEE S J, et al. Defect detection for corner cracks in steel billets using a wavelet reconstruction method[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2014, 31(2): 227-237. doi: 10.1364/JOSAA.31.000227
    [16] 姚裕, 吴洪涛. 大膨胀比喷管试验台的六分量天平研究[J]. 南京理工大学学报, 2011, 35(4): 547-551.

    YAO Y, WU H T. Six-component force balance for big expansion ratio nozzle test-bed[J]. Journal of Nanjing University of Science and Technology, 2011, 35(4): 547-551(in Chinese).
  • 加载中
图(10) / 表(10)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  56
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-24
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答