留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干扰补偿的车载平台快速调平控制技术

周伯俊 于传强 谭立龙 刘志浩 柯冰

周伯俊,于传强,谭立龙,等. 基于干扰补偿的车载平台快速调平控制技术[J]. 北京航空航天大学学报,2023,49(6):1495-1503 doi: 10.13700/j.bh.1001-5965.2021.0447
引用本文: 周伯俊,于传强,谭立龙,等. 基于干扰补偿的车载平台快速调平控制技术[J]. 北京航空航天大学学报,2023,49(6):1495-1503 doi: 10.13700/j.bh.1001-5965.2021.0447
ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0447
Citation: ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0447

基于干扰补偿的车载平台快速调平控制技术

doi: 10.13700/j.bh.1001-5965.2021.0447
基金项目: 陕西省自然科学基础研究计划(2020JQ487);陕西省高校科协青年人才托举计划(20190412)
详细信息
    作者简介:

    周伯俊 男,硕士研究生。主要研究方向:兵器发射理论与技术

    于传强 男,博士,教授,博士生导师。主要研究方向:兵器发射理论与技术

    通讯作者:

    E-mail:fishychq@163.com

  • 中图分类号: TJ768.2

Fast leveling control technology of vehicle platform based on interference compensation

Funds: Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ487); Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20190412)
More Information
  • 摘要:

    围绕车载平台重载工况下的快速调平需求,针对传统液压调平缸在大负载工况下调平精度不高的问题,采用电动缸使调平过程中由支腿变形产生的误差可以精确计算,提出了基于干扰补偿的车载平台快速调平控制策略。分析了4支点调平工况下的支腿缸负载特性,建立了电动缸形变误差模型,采用干扰补偿反馈方法修正调平误差,利用AMESim和MATLAB/Simulink软件对调平系统进行联合仿真验证,并搭建实验样机进行实验验证。结果表明:基于机械变形干扰补偿的4支点调平控制方法能使调平精度提高25%,调平时间缩短71.4%,使大负载大倾角情况下的车载平台在10 s内完成快速调平。

     

  • 图 1  车架平台坐标关系

    Figure 1.  Frame platform coordinate relationship

    图 2  调平方法示意图

    Figure 2.  Diagram of leveling method

    图 3  基于干扰补偿的模糊PID控制算法结构

    Figure 3.  Fuzzy PID control algorithm structure based on interference compensation

    图 4  调平初始状态纵向受力

    Figure 4.  Longitudinal force of initial state of leveling

    图 5  调平初始状态横向受力

    Figure 5.  Horizontal force of initial state of leveling

    图 6  调平控制器仿真模型

    Figure 6.  Simulation model of leveling controller

    图 7  AMESim环境下联合仿真模型

    Figure 7.  Co-simulation model under AMESim environment

    图 8  MATLAB/Simulink环境下联合仿真模型

    Figure 8.  Co-simulation model under MATLAB/Simulink environment

    图 9  调平支腿位移曲线

    Figure 9.  Leveling leg displacement curve

    图 10  实验样机

    Figure 10.  Experimental prototype

    图 11  调平电动缸

    Figure 11.  Leveling electric cylinder

    图 12  本控自动工作模式操控界面

    Figure 12.  Automatic working mode of control interface

    图 13  实验样机调平倾角变化曲线

    Figure 13.  Angle change curves of experimental prototype during leveling

    图 14  实验样机调平过程支腿位移变化曲线

    Figure 14.  Displacement curves of outriggers during leveling process of experimental prototype

    图 15  仿真与实验调平偏差曲线

    Figure 15.  Simulation and experimental leveling deviation curve

    表  1  $\Delta {K}_{{\rm{P}}}$模糊规则

    Table  1.   Fuzzy rule of $\Delta {K}_{{\rm{P}}}$

    e$ {e}_{{\rm{c}}} $
    NBNMNSZOPSPMPB
    NBPBPBPMPMPSZOZO
    NMPBPBPMPSPSZONS
    NSPMPMPMPSZONSNS
    ZOPMPMPSZONSNMNM
    PSPSPSZONSNSNMNM
    PMPSZONSNMNMNMNB
    PBZOZONMNMNMNBNB
    下载: 导出CSV

    表  2  $\Delta {K}_{{\rm{I}}}$模糊规则

    Table  2.   Fuzzy rule of $\Delta {K}_{{\rm{I}}}$

    e${e}_{{\rm{c}}}$
    NBNMNSZOPSPMPB
    NBNBNBNMNMNSZOZO
    NMNBNBNMNSNSZOZO
    NSNBNMNSNSZOPSPS
    ZONMNMNSZOPSPMPM
    PSNMNSZOPSPSPMPB
    PMZOZOPSPSPMPBPB
    PBZOZOPSPMPMPBPB
    下载: 导出CSV

    表  3  $\Delta {K}_{{\rm{D}}}$模糊规则

    Table  3.   Fuzzy rule of $\Delta {K}_{{\rm{D}}}$

    e${e}_{{\rm{c}}}$
    NBNMNSZOPSPMPB
    NBPSNSNBNBNBNMPS
    NMPSNSNBNMNMNSZO
    NSZONSNMNMNSNSZO
    ZOZONSNSNSNSNSZO
    PSZOZOZOZOZOZOZO
    PMPBNSPSPSPSPSPB
    PBPBPMPMPMPSPSPB
    下载: 导出CSV
  • [1] 徐嵩. 发射车六点调平系统建模和控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    XU S. Research on modeling and control algorithm of six-point leveling system of launch vehicle[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [2] 徐瑞亮, 陈奎生, 刘洋, 等. 基于模糊PID算法的车载液压调平动态特性联合仿真研究[J]. 液压与气动, 2017(8): 112-117.

    XU R L, CHEN K S, LIU Y, et al. Co-simulation based on fuzzy PID algorithm for dynamic characteristic of vehicle hydraulic leveling[J]. Chinese Hydraulics & Pneumatics, 2017(8): 112-117(in Chinese).
    [3] 仕润霖, 冯永保, 李淑智, 等. 模糊PID控制的车载平台高精度动态调平仿真研究[J]. 机床与液压, 2013, 41(5): 150-153.

    SHI R L, FENG Y B, LI S Z, et al. High-precision dynamic leveling simulation of the vehicle platform controlled by fuzzy-PID[J]. Machine Tool & Hydraulics, 2013, 41(5): 150-153(in Chinese).
    [4] 陈晖, 汪启港, 杜恒, 等. 基于双阀并联控制的压机四角调平系统研究[J]. 液压与气动, 2021, 45(3): 127-134. doi: 10.11832/j.issn.1000-4858.2021.03.018

    CHEN H, WANG Q G, DU H, et al. Four-point leveling system of press based on double valve parallel control[J]. Chinese Hydraulics & Pneumatics, 2021, 45(3): 127-134(in Chinese). doi: 10.11832/j.issn.1000-4858.2021.03.018
    [5] 罗艳蕾, 屠松庭, 石立明. 基于液压调平大阻尼系统的模糊PID控制研究[J]. 机床与液压, 2020, 48(15): 118-121.

    LUO Y L, TU S T, SHI L M. Research on fuzzy-PID control for large damping system based on hydraulic leveling[J]. Machine Tool & Hydraulics, 2020, 48(15) : 118-121(in Chinese).
    [6] 刘寒霜. 基于复杂环境下车载平台调平控制系统的研究[D]. 长沙: 中南林业科技大学, 2019: 15-35.

    LIU H S. Research on leveling control system of vehicle-mounted platform based on complex environment[D]. Changsha: Central South University of Forestry & Technology, 2019: 15-35(in Chinese).
    [7] 张启俊. 导弹发射车调平起竖系统建模及控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 12-30

    ZHANG Q J. Research on modeling and control algorithm of missile launch vehicle’s leveling and erecting system of missile launch vehicle[D]. Harbin: Harbin Institute of Technology, 2016: 12-30(in Chinese).
    [8] 刘更, 张文杰, 马尚君, 等. 行星滚柱丝杠副承载特性研究进展[J]. 机械科学与技术, 2017, 36(4): 598-604. doi: 10.13433/j.cnki.1003-8728.2017.0417

    LIU G, ZHANG W J, MA S J, et al. Review on load bearing characteristics of planetary roller screw mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(4): 598-604(in Chinese). doi: 10.13433/j.cnki.1003-8728.2017.0417
    [9] 彭贺, 马文星, 王忠山, 等. 丘陵山地拖拉机车身调平控制仿真分析与试验[J]. 吉林大学学报(工学版), 2019, 49(1): 157-165.

    PENG H, MA W X, WANG Z S, et al. Simulation analysis and test of tractor body leveling control in hilly and mountainous areas[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 157-165(in Chinese) .
    [10] 赵倩婷. 重载发射平台调平控制方法设计[D]. 南京: 南京理工大学, 2019: 10-25.

    ZHAO Q T. Design of leveling control method for heavy-duty launch platform[D]. Nanjing: Nanjing University of Science & Technology, 2019: 10-25(in Chinese).
    [11] 李翔宇, 肖峻, 潘运平, 等. 基于PSO的模糊PID车载平台调平控制系统研究[J]. 现代制造工程, 2021(2): 58-65.

    LI X Y, XIAO J, PAN Y P, et al. Research on leveling control system of fuzzy PID vehicle-mounted platform based on PSO[J]. Modern Manufacturing Engineering, 2021(2): 58-65(in Chinese).
    [12] 唐平建, 孙泽林, 宋鹏. 基于模糊PID的液压自动调平与升降控制系统研究[J]. 兵器装备工程学报, 2021, 42(2): 189-193.

    TANG P J, SUN Z L, SONG P. Research on hydraulic automatic leveling and lifting control system based on fuzzy PID[J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 189-193 (in Chinese).
    [13] 左都全, 钱利霞, 夏国峰, 等. 承重试验台同步加载系统设计计算及模糊PID耦合调平控制[J]. 计算力学学报, 2019, 36(2): 284-289.

    ZUO D Q, QIAN L X, XIA G F, et al. Coupling leveling controller design of a fuzzy PID-based synchronous loading system for load-bearing test rig[J]. Chinese Journal of Computational Mechanics, 2019, 36(2): 284-289(in Chinese).
    [14] 高歆杨, 柯芳, 邹伟, 等. 基于模糊控制策略的快速反射镜伺服控制[J]. 兵工学报, 2020, 41(8): 1529-1538. doi: 10.3969/j.issn.1000-1093.2020.08.007

    GAO X Y, KE F, ZOU W, et al. Servo control of fast steering mirror based on fuzzy control strategy[J]. Acta Armamentarii, 2020, 41(8): 1529-1538(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.08.007
    [15] 张杰, 袁东, 张朋, 等. 双侧电传动履带车辆模糊前馈-反馈转向控制[J]. 兵工学报, 2020, 41(8): 1688-1696. doi: 10.3969/j.issn.1000-1093.2020.08.023

    ZHANG J, YUAN D, ZHANG P, et al. Steering control based on fuzzy feedforward and feedback for dual-motor electric drive tracked vehicle[J]. Acta Armamentarii, 2020, 41(8): 1688-1696(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.08.023
    [16] 杨家军, 韦振兴, 朱继生, 等. 行星滚柱丝杠副载荷分布及刚度计算[J]. 华中科技大学学报(自然科学版), 2011, 39(4): 1-4.

    YANG J J, WEI Z X, ZHU J S, et al. Calculation of load distribution of planetary roller screws and static rigidity[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(4): 1-4(in Chinese) .
    [17] 杨恺. 超大载荷电动缸技术及其在试验机上的应用研究[D]. 长春: 吉林大学, 2017.

    YANG K. Research on the technology of super-load electric cylinder technology and its application in testing machine[D]. Changchun: Jilin University, 2017(in Chinese) .
    [18] HARRIS T A, KOTZALAS M N. 滚动轴承分析: 轴承技术的基本概念[M]. 罗继伟, 马伟, 等译. 北京: 机械工业出版社, 2010.

    HARRIS T A, KOTZALAS M N. Essential concepts of bearing technology[M]. LUO J W, MA W, et al. translated. Beijing: China Machine Press, 2010(in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  63
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 录用日期:  2021-10-09
  • 网络出版日期:  2021-10-13
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答