留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DEM的直升机沙盲加速计算方法

谭剑锋 韩水 王畅 于领军

谭剑锋,韩水,王畅,等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报,2023,49(6):1352-1361 doi: 10.13700/j.bh.1001-5965.2021.0450
引用本文: 谭剑锋,韩水,王畅,等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报,2023,49(6):1352-1361 doi: 10.13700/j.bh.1001-5965.2021.0450
TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0450
Citation: TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0450

基于DEM的直升机沙盲加速计算方法

doi: 10.13700/j.bh.1001-5965.2021.0450
基金项目: 国家自然科学基金(12172165);江苏省自然科学基金(BK20211259);旋翼空气动力学重点实验室基金(RAL20200302);江苏省高校“青蓝工程”优秀青年骨干教师项目
详细信息
    通讯作者:

    E-mail:Jianfengtan@njtech.edu.cn

  • 中图分类号: V221.52;TB553

Accelerated computational method of helicopter brownout based on DEM

Funds: National Natural Science Foundation of China (12172165); Natural Science Foundation of Jiangsu Province (BK20211259); Rotor Aerodynamics Key Laboratory Foundation (RAL20200302); Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project
More Information
  • 摘要:

    直升机沙盲数值模拟是研究沙盲演化特性的重要手段,而沙盲由众多动力学特性复杂的沙粒构成,这导致沙盲数值模拟复杂且计算量庞大。基于离散单元法(DEM)和沙粒动力学方程,将沙粒映射至背景网格实现加速计算,并将背景网格分裂为多子区再次加速计算,构建背景网格映射-分裂加速计算模型,且耦合沙粒接触碰撞模型、沙粒-流场耦合模型、旋翼/地面气动干扰模型,提出基于DEM的直升机沙盲加速计算方法。通过与美国陆军EH-60L着陆-起飞沙盲测试结果对比表明:所提方法能准确捕捉着陆-起飞状态的直升机沙盲,且相比于沙盲直接模拟方法,所提方法计算量显著减小。直接模拟方法的计算量随沙粒数量抛物线增加,而所提方法计算量随沙粒数量线性增加。当沙粒数量大于1×107时,相比于仅背景网格映射模型加速方法,所提方法计算量减小70.29%。

     

  • 图 1  沙粒碰撞的弹簧-阻尼器-滑块系统模型

    Figure 1.  Contact model of sand particle with spring-dashpot system

    图 2  背景网格映射模型

    Figure 2.  Background grid mapping model

    图 3  背景网格分裂模型

    Figure 3.  Background grid splitting model

    图 4  Yuma试验着陆区

    Figure 4.  Landing zone in Yuma flight test

    图 5  着陆过程中EH-60L位置

    Figure 5.  EH-60L’s position during approaching

    图 6  EH-60L着陆轨迹

    Figure 6.  Trajectory of EH-60L during approaching

    图 7  不同时间的沙云俯视图

    Figure 7.  Dust cloud at different time from top view

    图 8  不同时间的沙云侧视图

    Figure 8.  Dust cloud at different time from side view

    图 9  不同方法的计算时间随沙粒数量变化

    Figure 9.  Variations of computational time of different methods with number of particles

    图 10  着陆状态EH-60L沙云俯视图

    Figure 10.  Dust cloud for EH-60L during approaching from top view

    图 11  着陆状态EH-60L沙云侧视图

    Figure 11.  Dust cloud for EH-60L during approaching from side view

    图 12  EH-60L旋翼前端流场径向速度(r/R=−1.0)

    Figure 12.  Radial velocity at forward part of EH-60L(r/R=−1.0)

    表  1  沙云计算相对误差

    Table  1.   RMSs of computational dust clouds

    时间/s方法RMS相对误差/%
    俯视侧视俯视侧视
    2拉格朗日沙粒跟踪方法0.343 80.203
    本文方法0.295 90.207 2×10−2−13.912−89.819
    6拉格朗日沙粒跟踪方法0.237 50.562 1
    本文方法0.155 780.227−34.433−59.539
    17拉格朗日沙粒跟踪方法0.608 10.944
    本文方法0.134 90.810 5−77.798−14.186
    25拉格朗日沙粒跟踪方法0.672 21.151 3
    本文方法0.471 70.926 4−29.826−19.538
    下载: 导出CSV

    表  2  加速方法计算时间

    Table  2.   Computational time of accelerated methods

    沙粒数量计算时间/s
    直接模拟法基于背景网格
    映射模型
    基于背景网格映射-
    分裂模型
    1×104246.7432.2234.22
    5×1044 055.0146.6042.97
    1×10514 304.82147.69139.22
    5×105381 144.40398.08333.91
    1×1061 493 581.00795.13701.25
    5×10675 405 520.0010 243.893 857.50
    1×107117 761 400.0015 521.874 610.95
    下载: 导出CSV
  • [1] SZOBOSZLAY Z, DAVIS B, FUJIZAWA B. Degraded visual environment mitigation (DVE-M) program, Yuma 2016 flight trials in brownout[C]//Presented at the AHS International 73rd Annual Forum&Technology Display. Alexandria: AHS, 2017.
    [2] RYERSON C, HAEHNEL R, KOENIG G, et al. Visibility enhancement in rotorwash clouds[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
    [3] WENREN Y H, WALTER J, FAN M, et al. Vorticity confinement and advanced rendering to compute and visualize complex flows[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [4] HAEHNEL R B, MOULTON M A, WENREN W, et al. A model to simulate rotorcraft-induced brownout[C]//Proceedings of the 64th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2008: 589-601.
    [5] THOMAS S, LAKSHMINARAYAN V K, KALRA T S, et al. Eulerian-Lagrangian analysis of cloud evolution using CFD coupled with a sediment tracking algorithm[C]//The American Helicopter Society 67th Annual Forum. Alexandria: AHS, 2011: 298-315.
    [6] KUTZ B M, GUNTHER T, RUMPF A, et al. Numerical examination of a model rotor in brownout conditions[C]//Presented at the 70th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2014: 2450-2461.
    [7] THOMAS S, AMIRAUS M, BAEDER J. GPU-accelerated FVM-RANS hybrid solver for simulating two-phase flow beneath a hovering rotor[C]//The 69th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2013: 2462-2484.
    [8] 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3): 123363.

    HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123363(in Chinese).
    [9] KELLER J D, WHITEHOUSE G R, WACHSPRESS D A, et al. A physics-based model of rotorcraft brownout for flight simulation applications[C]//The American Helicopter Society 62nd Annual Forum. Alexandria: AHS, 2006: 1097-1107.
    [10] WACHSPRESS D A, WHITEHOURSE G R, KELLER J D, et al. A high fidelity brownout model for real-time flight simulations and trainers[C]//The American Helicopter Society 65th Annual Forum. Alexandria: AHS, 2009: 1281-1304.
    [11] ANDREA A D, SCORCELLETTI F. Enhanced numerical simulations of helicopter landing maneuvers in brownout conditions[C]//The American Helicopter Society 66th Annual Forum. Alexandria: AHS, 2010: 1084-1101.
    [12] PHILLIPS C, KIM H W, BROWN R E. The flow physics of helicopter brownout[C]//Present at the American Helicopter Society 66th Annual Forum. Alexandria: AHS, 2010: 1273-1291.
    [13] SYAL M, LEISHMAN J G. Predictions of brownout dust clouds compared to photogrammetry measurements[J]. Journal of the American Helicopter Society, 2013, 58(2): 1-18.
    [14] GOVINDARAJAN B M, LEISHMAN J G. Predictions of rotor and rotor/airframe configurational effects on brownout dust clouds[J]. Journal of Aircraft, 2016, 53(2): 545-560. doi: 10.2514/1.C033447
    [15] GOVINDARAJAN B, LEISHMAN J G, GUMEROV N A. Evaluation of particle clustering algorithms in the prediction of brownout dust clouds[C]//Presented at the 67th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2011: 325-347.
    [16] HU Q, GUMEROV N A, SYAL M, et al. Toward improved aeromechanics simulation using recent advancements in scientific computing[C]//Presented at the 67th Annual Forum of the American Helicopter Society. Alexandria: AHS, 2011: 2105-2119.
    [17] PORCÙ R, MIGLIO E, PAROLINI N, et al. HPC simulations of brownout: A noninteracting particles dynamic model[J]. The International Journal of High Performance Computing Applications, 2020, 34(3): 267-281. doi: 10.1177/1094342020905971
    [18] CUNDALL P A, STRACK O D L. Discussion: A discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3): 331-336.
    [19] 谭剑锋, 何龙, 于领军, 等. 基于黏性涡粒子/沙粒DEM的直升机沙盲建模[J]. 航空学报, 2022, 43(8): 125536.

    TAN J F, HE L, YU L J, et al. Helicopter brownout modeling based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125536(in Chinese).
    [20] MINDLIN R D, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20(3): 327-344. doi: 10.1115/1.4010702
    [21] DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. doi: 10.1016/j.ces.2003.09.037
    [22] 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报, 2019, 40(6): 122602.

    TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122602(in Chinese).
    [23] TAN J F, CAI J G, BARAKOS G N, et al. Computational study on the aerodynamic interference between tandem rotors and nearby obstacles[J]. Journal of Aircraft, 2020, 57(3): 456-468. doi: 10.2514/1.C035629
    [24] TAN J F, ZHOU T Y, SUN Y M, et al. Numerical investigation of the aerodynamic interaction between a tiltrotor and a tandem rotor during shipboard operations[J]. Aerospace Science and Technology, 2019, 87: 62-72. doi: 10.1016/j.ast.2019.02.005
    [25] WONG O D, TANNER P E. Photogrammetric measurements of an EH-60L brownout cloud[J]. Journal of the American Helicopter Society, 2016, 61(1): 1-10.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  64
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-16
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答