留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多变量约束的GNSS瞬时姿态确定方法

陈佳佳 袁洪 徐颖 袁超 葛建

陈佳佳,袁洪,徐颖,等. 基于多变量约束的GNSS瞬时姿态确定方法[J]. 北京航空航天大学学报,2023,49(6):1394-1401 doi: 10.13700/j.bh.1001-5965.2021.0453
引用本文: 陈佳佳,袁洪,徐颖,等. 基于多变量约束的GNSS瞬时姿态确定方法[J]. 北京航空航天大学学报,2023,49(6):1394-1401 doi: 10.13700/j.bh.1001-5965.2021.0453
CHEN J J,YUAN H,XU Y,et al. GNSS instantaneous attitude determination method based on multi-variable constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1394-1401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0453
Citation: CHEN J J,YUAN H,XU Y,et al. GNSS instantaneous attitude determination method based on multi-variable constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1394-1401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0453

基于多变量约束的GNSS瞬时姿态确定方法

doi: 10.13700/j.bh.1001-5965.2021.0453
基金项目: 中国科学院青年创新促进会(E03314020D); 中国科学院科研仪器设备研制项目(YJKYYQ20200069)
详细信息
    通讯作者:

    E-mail:yuanchao100918@aircas.ac.cn

  • 中图分类号: TN967.1

GNSS instantaneous attitude determination method based on multi-variable constraints

Funds: Youth Innovation Promotion Association CAS (E03314020D); Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20200069)
More Information
  • 摘要:

    传统的直接定姿法或最小二乘法依赖于整周模糊度的成功固定。当卫星数目较少或存在干扰的情形下,模糊度固定成功率会大大降低,进而导致定姿结果不准确。因此,提出基于多变量约束的姿态确定方法,所提方法将整周模糊度和姿态确定视作联合问题进行解算且对基线长度没有限制。利用天线的几何信息和姿态矩阵的正交特性对观测模型进行多变量约束,能够有效提升模糊度固定成功率并实现瞬时定姿。仿真结果表明:即使在信号观测精度非常低的场景下,所提方法也能达到75.7%的模糊度固定成功率;即使只有4颗卫星,所提方法也能达到90%以上的成功率。且在使用超短基线的前提下,所提方法能够达到0.93°的定姿精度。

     

  • 图 1  精度因子的曲面图

    Figure 1.  Surface graph of precision factor

    图 2  精度因子的等高线图

    Figure 2.  Contour map of precision factor

    图 3  卫星分布天空图

    Figure 3.  Sky map of satellite distribution

    图 4  4组数据对应的模糊度固定成功率

    Figure 4.  Ambiguity fixed success rate corresponding to the four sets of data

    图 5  天线布置的实物图

    Figure 5.  Physical picture of antenna layout

    图 6  天线布置的示意图

    Figure 6.  Schematic diagram of antenna layout

    图 7  定姿结果随时间变化曲线

    Figure 7.  Variation curve of attitude determination results with time

    图 8  3组数据的定姿误差

    Figure 8.  Attitude determination errors of three sets of data

    表  1  4组天线布局的参数

    Table  1.   Parameters of four antenna configurations

    组别基线1长度/m基线2长度/m夹角/(°)精度因子v
    第1组1.02.01005.2
    第2组1.52.09012
    第3组2.02.06016
    第4组2.02.09021.3
    下载: 导出CSV

    表  2  不同卫星数目下的模糊度固定成功率

    Table  2.   Success rate of ambiguity under different number of satellites %

    卫星数第1组模糊度固定成功率第2组模糊度固定成功率
    无约束多变量约束无约束多变量约束
    40.690.30.590.5
    56.795.45.896.6
    633.310034.5100
    765.910065.2100
    895.410096.2100
    999.910099.7100
    下载: 导出CSV

    表  3  姿态角的均值和标准差

    Table  3.   Mean and standard deviation of attitude angle (°)

    组别航向角俯仰角横滚角
    均值标准差均值标准差均值标准差
    第1组−123.320.216−0.280.472−0.250.670
    第2组−59.510.212−0.410.740−0.410.395
    下载: 导出CSV

    表  4  3组天线布局的参数

    Table  4.   Parameters of three antenna configurations

    组别基线1长度/m基线2长度/m夹角/(°)精度因子v
    第1组0.730.35900.09
    第2组0.730.35600.07
    第3组0.730.22600.03
    下载: 导出CSV

    表  5  姿态角估计值的标准差

    Table  5.   Standard deviation of estimated attitude angle (°)

    组别航向角俯仰角横滚角
    第1组0.270.930.68
    第2组0.281.331.42
    第3组0.291.421.56
    下载: 导出CSV
  • [1] DMITRIYEV S P, STEPANOV O A, SHEPEL S V. Nonlinear filtering methods application in INS alignment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 260-272.
    [2] WU M, WU Y, HU X, et al. Optimization-based alignment for inertial navigation systems: Theory and algorithm[J]. Aerospace Science and Technology, 2011, 15(1): 1-17. doi: 10.1016/j.ast.2010.05.004
    [3] HAUSCHILD A, GRILLMAYER G, MONTENBRUCK O, et al. GPS based attitude determination for the flying laptop satellite[C]//Small Satellites for Earth Observation. Berlin: Springer, 2008: 211-220.
    [4] 郑坤, 董绪荣, 刘亚涛, 等. GNSS载波相位多天线实时测姿系统的设计与实现[J]. 测绘科学技术学报, 2014, 31(2): 136-139.

    ZHENG K, DONG X R, LIU Y T, et al. Attitude determination with a GNSS multiple-antenna system[J]. Journal of Geomatics Science and Technology, 2014, 31(2): 136-139(in Chinese).
    [5] KIM D, LEE S, LEE S, et al. Application of a new efficient attitude determination algorithm on a ground simulator[J]. International Journal of Control, Automation and Systems, 2011, 9(5): 998-1004.
    [6] 张方照, 柴艳菊, 柴华, 等. 两种多天线GNSS定姿方法的精度分析[J]. 中国惯性技术学报, 2016, 24(1): 30-35.

    ZHANG F Z, CHAI Y J, CHAI H, et al. Analysis on precision of two attitude determination methods using GNSS multi-antenna data[J]. Journal of Chinese Inertial Technology, 2016, 24(1): 30-35(in Chinese).
    [7] WANG Y, ZHAN X, ZHANG Y. Improved ambiguity function method based on analytical resolution for GPS attitude determination[J]. Measurement Science and Technology, 2007, 18(9): 2985-2990.
    [8] BO W, MIAO L, WANG S, et al. A constrained LAMBDA method for GPS attitude determination[J]. GPS Solutions, 2009, 13(2): 97-107. doi: 10.1007/s10291-008-0103-2
    [9] BALLAL T, BLEAKLEY C J. GNSS instantaneous ambiguity resolution and attitude determination exploiting the receiver antenna configuration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2061-2069.
    [10] 龚昂, 赵修斌, 庞春雷, 等. 基线矢量约束GNSS单频单历元可靠姿态解算方法[J]. 华中科技大学学报(自然科学版), 2017, 45(1): 103-107.

    GONG A, ZHAO X B, PANG C L, et al. Reliable GNSS single frequency single epoch attitude determination algorithm with baseline vector constraints[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(1): 103-107(in Chinese).
    [11] GIORGI G, TEUNISSEN P, VERHAGEN S, et al. Improving the GNSS attitude ambiguity success rate with the multivariate constrained LAMBDA method[J]. Iag-geodesy for Planet Earth Symposium on Mathematical Geodesy, 2009, 136(3): 941-948.
    [12] CHEN J, XU Y, YUAN H, et al. A new GNSS spoofing detection method using two antennas[J]. IEEE Access, 2020, 8: 110738-110747.
    [13] GIORGI G. GNSS carrier phase-based attitude determination estimation and applications[D]. Deft: Deft University of Technology, 2011: 71-80.
    [14] TEUNISSEN P. The lambda method for the GNSS compass[J]. Artificial Satellites, 2006, 41(3): 89-103.
    [15] ZHANG P, ZHAO Y Z, LIN H, et al. A novel GNSS attitude determination method based on primary baseline switching for a multi-antenna platform[J]. Remote Sensing, 2020, 12(5): 747. doi: 10.3390/rs12050747
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  57
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 录用日期:  2021-11-11
  • 网络出版日期:  2021-12-15
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答