留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池容量衰退机理与影响因素

闫啸宇 周思达 卢宇 周新岸 陈飞 杨世春 华旸 徐凯

闫啸宇,周思达,卢宇,等. 锂离子电池容量衰退机理与影响因素[J]. 北京航空航天大学学报,2023,49(6):1402-1413 doi: 10.13700/j.bh.1001-5965.2021.0458
引用本文: 闫啸宇,周思达,卢宇,等. 锂离子电池容量衰退机理与影响因素[J]. 北京航空航天大学学报,2023,49(6):1402-1413 doi: 10.13700/j.bh.1001-5965.2021.0458
YAN X Y,ZHOU S D,LU Y,et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1402-1413 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0458
Citation: YAN X Y,ZHOU S D,LU Y,et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1402-1413 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0458

锂离子电池容量衰退机理与影响因素

doi: 10.13700/j.bh.1001-5965.2021.0458
基金项目: 广东省重点领域研发计划(2020B0909030002)
详细信息
    通讯作者:

    E-mail:yangshichun@buaa.edu.cn

  • 中图分类号: U469

Degradation mechanism and influencing factors on lithium-ion batteries

Funds: Key R&D Projects in Guangdong Province (2020B0909030002)
More Information
  • 摘要:

    发展电动汽车是中国迈向汽车强国的重要发展战略。锂离子电池是电动汽车的重要储能元件,然而其寿命异常衰退、健康状态表征难等问题严重制约了产业快速健康发展。锂离子电池性能微观模糊性、演化复杂性、实际多变性造成其状态和性能估计表征难,容量衰退估计偏差大。因此,亟需深入挖掘内部容量衰退机理、建立数学模型实现微观反应过程量化评价。从锂离子电池容量衰退机理研究出发,系统性分析正负极材料、电解液、集流体等电池基础材料在电池老化过程中的失效机理,结合实际锂离子电池运行工况阐明锂离子电池老化影响因素,分析充放电倍率、温度、循环区间3种因素对容量衰退影响;归纳总结了现有的3类锂离子电池容量衰退数学模型,为锂离子电池精细化建模、电池健康管理方法设计提供了参考。

     

  • 图 1  锂离子电池老化综合机理分析[3]

    Figure 1.  Comprehensive analysis of aging mechanism of lithium-ion batteries[3]

    图 2  负极析锂导致的活性锂离子损失

    Figure 2.  Loss of active lithium ions due to lithium precipitation in negative electrode

    图 3  锂枝晶生长导致活性锂离子损失

    Figure 3.  Lithium dendrite growth leads to loss of active lithium ions

    图 4  锂沉积导致活性锂离子损失

    Figure 4.  Loss of active lithium ions due to lithium deposition

    图 5  正极材料损失示意图

    Figure 5.  Diagram of positive material loss

    图 6  锂枝晶生长与电解液分解导致的容量衰退示意图

    Figure 6.  Schematic diagram of capacity loss due to lithium dendrite growth and electrolyte decomposition

    图 7  电解液分解导致容量衰退

    Figure 7.  Loss of capacity due to electrolyte decomposition

    图 8  部分因素对电池老化影响[46]

    Figure 8.  Effect of some factors on battery ageing[46]

    表  1  部分电池老化模型

    Table  1.   Partial battery ageing model

    发表年份作者研究内容
    2021Šeruga 等[59]构建电池损伤因子,实现基于特征与经验公式耦合电池容量预测
    2021Li等[60]构建电池老化衰退经验模型,结合粒子群优化算法完成模型辨识,并应用模型实现快充策略设计
    2020Pan等[61]构建基于IC曲线特征峰的容量衰退预测模型
    2020Lucu等[62]构建多倍率、宽温域下动力电老化数据库,为基于数据与经验模型的老化研究提供参考
    2019Lu等[63]通过分数阶模型描述锂离子电池动态特性,并实现不同老化深度条件下的分数阶辨识
    下载: 导出CSV
  • [1] 王昆, 黎永志, 罗林. 锂离子电池容量衰减变化及原因分析[J]. 中小企业管理与科技, 2019(8): 146-148.

    WANG K, LI Y Z, LUO L. Variation and cause analysis of capacity attenuation of lithium ion battery[J]. Management & Technology of SME, 2019(8): 146-148 (in Chinese).
    [2] 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. doi: 10.12028/j.issn.2095-4239.2017.00022

    WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025(in Chinese). doi: 10.12028/j.issn.2095-4239.2017.00022
    [3] 纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J]. 北京工业大学学报, 2020, 46(11): 1272-1282. doi: 10.11936/bjutxb2019040020

    JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282(in Chinese). doi: 10.11936/bjutxb2019040020
    [4] ZHANG D, HARAN B S, DURAIRAJAN A, et al. Studies on capacity fade of lithium-ion batteries[J]. Journal of Power Sources, 2000, 91(2): 122-129. doi: 10.1016/S0378-7753(00)00469-9
    [5] BROUSSELY M, BIENSAN P, BONHOMME F, et al. Main aging mechanisms in Li ion batteries[J]. Journal of Power Sources, 2005, 146(1-2): 90-96. doi: 10.1016/j.jpowsour.2005.03.172
    [6] AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325.
    [7] REZVANIZANIANI S M, LIU Z C, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124. doi: 10.1016/j.jpowsour.2014.01.085
    [8] HAUSBRAND R, CHERKASHININ G, EHRENBERG H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches[J]. Materials Science and Engineering:B, 2015, 192: 3-25. doi: 10.1016/j.mseb.2014.11.014
    [9] ZHANG M X, WANG C C, ZHANG R, et al. Comparison of the guidelines on good agricultural and collection practices in herbal medicine of the European Union, China, the WHO, and the United States of America[J]. Pharmacological Research, 2021, 167: 105533. doi: 10.1016/j.phrs.2021.105533
    [10] MÜHLBAUER M J, DOLOTKO O, HOFMANN M, et al. Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries[J]. Journal of Power Sources, 2017, 348: 145-149. doi: 10.1016/j.jpowsour.2017.02.077
    [11] KABIR M M, DEMIROCAK D E. Degradation mechanisms in Li-ion batteries: A state-of-the-art review[J]. International Journal of Energy Research, 2017, 41(14): 1963-1986. doi: 10.1002/er.3762
    [12] WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells—A review[J]. Journal of Power Sources, 2018, 384: 107-124. doi: 10.1016/j.jpowsour.2018.02.063
    [13] 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188. doi: 10.3969/j.issn.1000-680X.2014.02.011

    DAI H F, WANG N, WEI X Z, et al. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles[J]. Automotive Engineering, 2014, 36(2): 181-188(in Chinese). doi: 10.3969/j.issn.1000-680X.2014.02.011
    [14] 张立强. 锂离子电池多物理模型参数辨识及健康特征提取[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHANG L Q. Parameter identification of the multi-physics model and health feature extraction for lithium-ion battery[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
    [15] RÖDER P, STIASZNY B, ZIEGLER J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268: 315-325. doi: 10.1016/j.jpowsour.2014.06.040
    [16] 马泽宇, 姜久春, 张维戈, 等. 锂离子动力电池热老化的路径依赖性研究[J]. 电工技术学报, 2014, 29(5): 221-227. doi: 10.3969/j.issn.1000-6753.2014.05.028

    MA Z Y, JIANG J C, ZHANG W G, et al. Research on path dependence of large format LiMn2O4 battery degradation in thermal aging[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 221-227(in Chinese). doi: 10.3969/j.issn.1000-6753.2014.05.028
    [17] ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(10): 3647-3667. doi: 10.1149/1.1838857
    [18] 时玮, 张言茹, 陈大分, 等. 锰酸锂动力电池寿命测试方法[J]. 汽车工程, 2015, 37(1): 67-71. doi: 10.19562/j.chinasae.qcgc.2015.01.012

    SHI W, ZHANG Y R, CHEN D F, et al. Lifespan test method for LiMn2O4 traction batteries[J]. Automotive Engineering, 2015, 37(1): 67-71(in Chinese). doi: 10.19562/j.chinasae.qcgc.2015.01.012
    [19] YOUN B Y, JANG B H, CHEON C, et al. Implementing accountable care organizations with integrative medicine in Korean health care system[J]. Integrative Medicine Research, 2021, 10(3): 100711. doi: 10.1016/j.imr.2020.100711
    [20] HOU C, HAN J H, LIU P, et al. Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy[J]. Advanced Energy Materials, 2019, 9(45): 1902675. doi: 10.1002/aenm.201902675
    [21] CANNARELLA J, ARNOLD C B. The effects of defects on localized plating in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1365-A1373. doi: 10.1149/2.1051507jes
    [22] 张立军, 程洪正, 孟德建. 锂离子电池电-热-机耦合特性实验研究及关键参数辨识[J]. 西安交通大学学报, 2017, 51(8): 142-148.

    ZHANG L J, CHENG H Z, MENG D J. Experimental study on ETSS coupling mechanism and identification of key parameter for lithium-ion batteries[J]. Journal of Xi’an Jiaotong University, 2017, 51(8): 142-148(in Chinese).
    [23] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1-2): 269-281. doi: 10.1016/j.jpowsour.2005.01.006
    [24] TAHMASBI A A, EIKERLING M H. Statistical physics-based model of mechanical degradation in lithium ion batteries[J]. Electrochimica Acta, 2018, 283: 75-87. doi: 10.1016/j.electacta.2018.06.119
    [25] XIA T T, LIANG T X, XIAO Z E, et al. Nanograined copper foil as a high-performance collector for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 831: 154801. doi: 10.1016/j.jallcom.2020.154801
    [26] 徐志友, 姚建军, 李荐, 等. 正极集流体对锂离子电池性能的影响研究[J]. 电源技术, 2019, 43(11): 1771-1774.

    XU Z Y, YAO J J, LI J, et al. Effect of positive current collector on performance of lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(11): 1771-1774(in Chinese).
    [27] 宋文吉, 陈永珍, 吕杰, 等. 锂离子电池容量衰减机理研究进展[J]. 新能源进展, 2016, 4(5): 364-372.

    SONG W J, CHEN Y Z, LÜ J, et al. Research progress on capacity fading mechanisms of lithium-ion batteries[J]. Advances in New and Renewable Energy, 2016, 4(5): 364-372(in Chinese).
    [28] 孙仲振. 锂离子电池集流体的研究进展[J]. 云南化工, 2020, 47(8): 11-14.

    SUN Z Z. Research progress of collectors for lithium-ion battery[J]. Yunnan Chemical Technology, 2020, 47(8): 11-14(in Chinese).
    [29] 刘笑, 王志华, 乔力, 等. 充放电过程中锂离子电池负极铜集流体的电化学和力学行为研究[J]. 太原理工大学学报, 2020, 51(1): 73-80. doi: 10.16355/j.cnki.issn1007-9432tyut.2020.01.010

    LIU X, WANG Z H, QIAO L, et al. Electrochemical and mechanical behavior of copper current collector of lithium ion battery negative electrode during charge and discharge[J]. Journal of Taiyuan University of Technology, 2020, 51(1): 73-80(in Chinese). doi: 10.16355/j.cnki.issn1007-9432tyut.2020.01.010
    [30] 郑会元. 锂离子电池容量衰退机理及抑制方法研究[D]. 苏州: 苏州大学, 2017.

    ZHENG H Y. Capacity fading mechanisms and the controlling strategies for lithium ion batteries[D]. Suzhou: Soochow University, 2017 (in Chinese).
    [31] PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. doi: 10.1016/j.jpowsour.2011.05.023
    [32] 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. doi: 10.7498/aps.67.128501

    WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290(in Chinese). doi: 10.7498/aps.67.128501
    [33] 郑杰允, 李泓. 锂电池基础科学问题(Ⅴ): 电池界面[J]. 储能科学与技术, 2013, 2(5): 503-513. doi: 10.3969/j.issn.2095-4239.2013.05.009

    ZHENG J Y, LI H. Fundamental scientific aspects of lithium batteries (Ⅴ)—Interfaces[J]. Energy Storage Science and Technology, 2013, 2(5): 503-513(in Chinese). doi: 10.3969/j.issn.2095-4239.2013.05.009
    [34] 史启通. 锂离子电池热应力分析及厚度变化的研究[D]. 北京: 北京有色金属研究总院, 2014.

    SHI Q T. Research of pouch lithium-ion battery thermal stress and thickness variation[D]. Beijing: General Research Institute for Nonferrous Metals, 2014 (in Chinese).
    [35] 卢世刚, 史启通, 唐海波. 方形锂离子电池热应力的数学分析和数值模拟[J]. 汽车安全与节能学报, 2014, 5(3): 298-303. doi: 10.3969/j.issn.1674-8484.2014.03.013

    LU S G, SHI Q T, TANG H B. Mathematical analysis and numerical simulation for thermo-stress in a square lithium-ion battery[J]. Journal of Automotive Safety and Energy, 2014, 5(3): 298-303(in Chinese). doi: 10.3969/j.issn.1674-8484.2014.03.013
    [36] CARLSTEDT D, ASP L E. Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling[J]. Composites Science and Technology, 2019, 179: 69-78. doi: 10.1016/j.compscitech.2019.04.024
    [37] GE X H, YUAN B H, XU S, et al. Anodic lithium ion battery material with negative thermal expansion[J]. Ceramics International, 2020, 46(11): 19127-19134. doi: 10.1016/j.ceramint.2020.04.248
    [38] 卢威, 张建生, 吴晓东, 等. 高电压下正极表面钝化膜生长过程的原位AFM研究[C]//中国化学会第29届学术年会摘要集——第32分会: 纳米表征与检测技术. 北京: 中国化学会, 2014: 2.

    LU W, ZHANG J S, WU X D, et al. In situ AFM study of the growth process of passivation films on positive electrode surfaces under high voltage [C]//Summary of the 29th Annual Academic Conference of the Chinese Chemical Society, Chapter 32: Nanometer Characterization and Detection Technology. Beijing: Chinese Chemical Society, 2014: 2
    [39] HENSCHEL J, HORSTHEMKE F, STENZEL Y P, et al. Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells—A comprehensive analytical study[J]. Journal of Power Sources, 2020, 447: 227370. doi: 10.1016/j.jpowsour.2019.227370
    [40] YANG N X, ZHANG X W, SHANG B B, et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination[J]. Journal of Power Sources, 2016, 306: 733-741. doi: 10.1016/j.jpowsour.2015.12.079
    [41] NORIN L, KOSTECKI R, MCLARNON F. Study of membrane degradation in high-power lithium-ion cells[J]. Electrochemical and Solid-State Letters, 2002, 5(4): A67. doi: 10.1149/1.1457206
    [42] LUISO S, FEDKIW P. Lithium-ion battery separators: Recent developments and state of art[J]. Current Opinion in Electrochemistry, 2020, 20: 99-107. doi: 10.1016/j.coelec.2020.05.011
    [43] WU X, LIU N N, GUO Z K, et al. Constructing multi-functional Janus separator toward highly stable lithium batteries[J]. Energy Storage Materials, 2020, 28: 153-159. doi: 10.1016/j.ensm.2020.03.004
    [44] FU R J, XIAO M, CHOE S Y. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. Journal of Power Sources, 2013, 224: 211-224. doi: 10.1016/j.jpowsour.2012.09.096
    [45] YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015. doi: 10.1016/j.jclepro.2021.128015
    [46] JAFARI M, KHAN K, GAUCHIA L. Deterministic models of Li-ion battery aging: It is a matter of scale[J]. Journal of Energy Storage, 2018, 20: 67-77. doi: 10.1016/j.est.2018.09.002
    [47] KOSTECKI R, NORIN L, SONG X Y, et al. Diagnostic studies of polyolefin separators in high-power Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(4): A522. doi: 10.1149/1.1649233
    [48] DUBARRY M, TRUCHOT C, LIAW B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. doi: 10.1016/j.jpowsour.2011.08.078
    [49] CHENG J L, LI X H, WANG Z X, et al. Mechanism for capacity fading of 18650 cylindrical lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1602-1607. doi: 10.1016/S1003-6326(17)60182-1
    [50] BARCELLONA S, PIEGARI L. Effect of current on cycle aging of lithium ion batteries[J]. Journal of Energy Storage, 2020, 29: 101310. doi: 10.1016/j.est.2020.101310
    [51] YANG S C, HUA Y, QIAO D, et al. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries[J]. Electrochimica Acta, 2019, 326: 134928. doi: 10.1016/j.electacta.2019.134928
    [52] ZILBERMAN I, LUDWIG S, SCHILLER M, et al. Online aging determination in lithium-ion battery module with forced temperature gradient[J]. Journal of Energy Storage, 2020, 28: 101170. doi: 10.1016/j.est.2019.101170
    [53] BHARATHRAJ S, ADIGA S P, MAYYA K S, et al. Degradation-guided optimization of charging protocol for cycle life enhancement of Li-ion batteries with lithium manganese oxide-based cathodes[J]. Journal of Power Sources, 2020, 474: 228659. doi: 10.1016/j.jpowsour.2020.228659
    [54] MUSSA A S, KLETT M, BEHM M, et al. Fast-charging to a partial state of charge in lithium-ion batteries: A comparative ageing study[J]. Journal of Energy Storage, 2017, 13: 325-333. doi: 10.1016/j.est.2017.07.004
    [55] LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1-2): 302-309. doi: 10.1016/S0378-7753(01)00820-5
    [56] DE SUTTER L, FIROUZ Y, DE HOOG J, et al. Battery aging assessment and parametric study of lithium-ion batteries by means of a fractional differential model[J]. Electrochimica Acta, 2019, 305: 24-36. doi: 10.1016/j.electacta.2019.02.104
    [57] MAMUN A, SIVASUBRAMANIAM A, FATHY H K. Collective learning of lithium-ion aging model parameters for battery health-conscious demand response in datacenters[J]. Energy, 2018, 154: 80-95. doi: 10.1016/j.energy.2018.04.070
    [58] REDONDO-IGLESIAS E, VENET P, PELISSIER S. Eyring acceleration model for predicting calendar ageing of lithium-ion batteries[J]. Journal of Energy Storage, 2017, 13: 176-183. doi: 10.1016/j.est.2017.06.009
    [59] ŠERUGA D, GOSAR A, SWEENEY C A, et al. Continuous modelling of cyclic ageing for lithium-ion batteries[J]. Energy, 2021, 215: 119079. doi: 10.1016/j.energy.2020.119079
    [60] LI Y J, LI K N, XIE Y, et al. Optimization of charging strategy for lithium-ion battery packs based on complete battery pack model[J]. Journal of Energy Storage, 2021, 37: 102466. doi: 10.1016/j.est.2021.102466
    [61] PAN B, DONG D, WANG J G, et al. Aging mechanism diagnosis of lithium ion battery by open circuit voltage analysis[J]. Electrochimica Acta, 2020, 362: 137101. doi: 10.1016/j.electacta.2020.137101
    [62] LUCU M, AZKUE M, CAMBLONG H, et al. Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data: Holistic validation with ev driving profiles[C]// 2020 IEEE Energy Conversion Congress and Exposition (ECCE). Piscataway: IEEE Press, 2020: 5600-5607.
    [63] LU X, LI H, CHEN N. An indicator for the electrode aging of lithium-ion batteries using a fractional variable order model[J]. Electrochimica Acta, 2019, 299: 378-387. doi: 10.1016/j.electacta.2018.12.097
    [64] PANG H, MOU L J, GUO L, et al. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries[J]. Electrochimica Acta, 2019, 307: 474-487. doi: 10.1016/j.electacta.2019.03.199
    [65] SINGH P, KHARE N, CHATURVEDI P K. Li-ion battery ageing model parameter: SEI layer analysis using magnetic field probing[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 35-42. doi: 10.1016/j.jestch.2018.01.007
    [66] LIU Z F, IVANCO A, ONORI S. Aging characterization and modeling of nickel-manganese-cobalt lithium-ion batteries for 48V mild hybrid electric vehicle applications[J]. Journal of Energy Storage, 2019, 21: 519-527. doi: 10.1016/j.est.2018.11.016
    [67] KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries[J]. Journal of Power Sources, 2020, 451: 227798. doi: 10.1016/j.jpowsour.2020.227798
    [68] VON LÜDERS C, KEIL J, WEBERSBERGER M, et al. Modeling of lithium plating and lithium stripping in lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 41-47. doi: 10.1016/j.jpowsour.2018.12.084
    [69] MEI W X, ZHANG L, SUN J H, et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy Storage Materials, 2020, 32: 91-104. doi: 10.1016/j.ensm.2020.06.021
    [70] YANG S C, GAO X L, LI Y L, et al. Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions[J]. Journal of Power Sources, 2021, 494: 229772. doi: 10.1016/j.jpowsour.2021.229772
    [71] ADAM A, KNOBBE E, WANDT J, et al. Application of the differential charging voltage analysis to determine the onset of lithium-plating during fast charging of lithium-ion cells[J]. Journal of Power Sources, 2021, 495: 229794. doi: 10.1016/j.jpowsour.2021.229794
    [72] CHEN B R, KUNZ M R, TANIM T R, et al. A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures[J]. Cell Reports Physical Science, 2021, 2(3): 100352. doi: 10.1016/j.xcrp.2021.100352
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2338
  • HTML全文浏览量:  220
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 录用日期:  2021-09-26
  • 网络出版日期:  2022-03-03
  • 整期出版日期:  2023-06-30

目录

    /

    返回文章
    返回
    常见问答