留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

失谐螺栓连接对薄壁圆筒的动力特性影响

姚星宇

姚星宇. 失谐螺栓连接对薄壁圆筒的动力特性影响[J]. 北京航空航天大学学报,2023,49(5):1238-1246 doi: 10.13700/j.bh.1001-5965.2021.0468
引用本文: 姚星宇. 失谐螺栓连接对薄壁圆筒的动力特性影响[J]. 北京航空航天大学学报,2023,49(5):1238-1246 doi: 10.13700/j.bh.1001-5965.2021.0468
YAO X Y. Influence of mistuning bolted joints on dynamic characteristics of thin-walled cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1238-1246 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0468
Citation: YAO X Y. Influence of mistuning bolted joints on dynamic characteristics of thin-walled cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1238-1246 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0468

失谐螺栓连接对薄壁圆筒的动力特性影响

doi: 10.13700/j.bh.1001-5965.2021.0468
基金项目: 中国民用航空飞行学院重点项目(ZJ2019-05);中国民用航空飞行学院面上项目(BJ2016-03)
详细信息
    通讯作者:

    E-mail:yaoxingyu@buaa.edu.cn

  • 中图分类号: V232.7

Influence of mistuning bolted joints on dynamic characteristics of thin-walled cylinder

Funds: Key Project of Civil Aviation Flight University of China (ZJ2019-05); General Project of Civil Aviation Flight University of China (BJ2016-03)
More Information
  • 摘要:

    螺栓连接结构的性能退化是航空发动机安全运行必须考虑的问题,螺栓连接预紧失谐这个概念可以表征螺栓连接结构的性能退化,并用预紧失谐量和预紧失谐比例说明预紧失谐的状态。在此基础上,将预紧失谐的概念与螺栓连接改进薄层单元法相结合,研究失谐螺栓连接对薄壁圆筒动力特性的影响。针对预紧失谐对薄壁圆筒的确定性动力特性进行分析,包括固有特性、稳态响应的影响,考虑螺栓预紧力的随机性,研究失谐螺栓连接对薄壁圆筒的概率性动力特性分析。研究结果表明:薄壁圆筒同阶固有频率的分离程度随着预紧失谐量的减小而增大,随着预紧失谐比例的增大呈现“双峰”特点;预紧失谐使得薄壁圆筒响应峰值对应的频率减小但幅值增大,随机预紧失谐使得响应峰值点的频带更宽,并且输入参数为指数分布时,输出参数为威布尔分布。

     

  • 图 1  改进薄层单元法

    Figure 1.  Improved thin-layer element method

    图 2  某型航空发动机静子结构

    Figure 2.  Stator structure of aero engine

    图 3  薄壁圆筒螺栓连接结构

    Figure 3.  Bolted joints structure of thin-walled cylinder

    图 4  带螺栓的薄壁圆筒结构

    Figure 4.  Thin-walled cylinder structure with bolts

    图 5  螺栓连接处的有限元模型

    Figure 5.  Finite element model of bolted joints area

    图 6  $\phi $对薄壁圆筒固有频率的影响曲线($\beta $=1/3)

    Figure 6.  Influence of $\phi $ on natural frequency of thin-walled cylinder ($\beta $=1/3)

    图 7  $\phi $$\beta $对薄壁圆筒第1阶固有频率分离程度的影响

    Figure 7.  Influence of $\phi $and $\beta $ on the first order natural frequency separation of thin-walled cylinder

    图 8  薄壁圆筒的边界条件

    Figure 8.  Boundary conditions of thin-walled cylinder

    图 9  预紧谐调与预紧失谐薄壁圆筒响应曲线

    Figure 9.  Response of thin-walled cylinder with tuning preload and mistuning preload

    图 10  $\phi $$\beta $对薄壁圆筒响应的影响

    Figure 10.  Influence of $\phi $ and $\beta $ on response of structure

    图 11  E1KTL的关系

    Figure 11.  Relationship between E1 and KTL

    图 12  E1的指数分布

    Figure 12.  Exponential distribution of E1

    图 13  失谐时螺栓连接处的有限元模型

    Figure 13.  Finite element model of mistuning bolted joints

    图 14  薄壁圆筒加载点y 向和x向的随机响应曲线

    Figure 14.  Random response curves of load point in y and x direction of thin-walled cylinder

    图 15  薄壁圆筒输入、输出参数的概率分布

    Figure 15.  Probability distribution of input and output parameters of thin-walled cylinder

    表  1  圆筒和螺栓的材料参数

    Table  1.   Material parameters of cylinder and bolts

    参数数值
    弹性模量 E/GPa195
    泊松比 $\nu $0.3
    密度 $\rho $/(kg·m−3)7850
    表面粗糙度 ${R_{\rm{a}}}$/${\text{μm} }$0.9
    屈服极限 ${\sigma _{0.2}}$/MPa355
    硬度 H/MPa570
    下载: 导出CSV

    表  2  薄层单元的材料参数

    Table  2.   Material parameters of thin-layer elements

    F/NE/GPaG/GPa
    螺栓连接
    区域
    对接面接触
    区域
    螺栓连接
    区域
    对接面接触
    区域
    25 00014.131.9764.390.760
    20 00014.801.1325.690.435
    15 00015.720.9116.050.350
    10 00016.250.7916.250.304
    5 00016.750.6916.440.266
    下载: 导出CSV

    表  3  不同$\beta $$\phi $下薄壁圆筒的前6阶固有频率

    Table  3.   The first 6-order natural frequencies of thin-walled cylinder under different $\beta $ and $\phi $

    $\beta $$\phi $/%固有频率/Hz
    第1阶第2阶第3阶第4阶第5阶第6阶
    0 01 399.282 864.413 536.574045.114685.784 956.10
    1/6−201 384.422 859.873 536.484 044.034 675.444 952.45
    1 398.162 863.853 536.584 044.394 684.994 955.62
    −401 378.252 858.423 536.444 043.664 671.144 951.28
    1 397.712 863.683 536.574 044.124 684.674 955.47
    −601 374.142 857.543 536.414 043.454 668.264 950.58
    1 397.432 863.583 536.574 043.964 684.474 955.38
    −801 370.212 856.733 536.394 043.254 665.504 949.95
    1 397.182 863.493 536.574 043.824 684.294 955.29
    1/3−201 374.612 857.123536.424 042.994 668.814 950.14
    1 390.242 861.323536.524 043.364 679.394 953.57
    −401 363.382 854.693 536.354 042.284 661.214 948.11
    1 386.702 860.343 536.494 042.774 676.844 952.76
    −601 355.512 853.193 536.304 041.864 655.944 946.85
    1 384.412 859.743 536.474 042.414 675.174 952.88
    −801 347.692 851.803 536.264 041.484 650.744 945.67
    1 382.2728 59.193 536.454 042.094 673.594 951.83
    1/2−201 372.462 856.473 536.404 042.134 667.484 949.54
    1 374.662 856.703 536.404 042.154 668.304 949.77
    −401 359.792 853.783 536.324 041.154 659.134 947.25
    1 364.372 854.123 536.334 041.174 660.804 947.67
    −601 350.742 852.113 536.274 040.554 653.284 945.80
    1 357.462 852.633 536.284 040.594 653.694 946.38
    −801 341.572 850.553 536.224 040.024 647.454 944.44
    1 350.822 851.203 536.234 040.064 650.734 945.18
    2/3−201 358.512 851.943 536.284 040.944 656.594 946.04
    1 371.432 855.933 536.394 041.294 666.584 949.08
    −401 340.962 847.803 536.154 039.584 643.474 942.73
    1 358.562 853.073 536.304 040.034 657.914 946.65
    −601329.112 845.253 536.074 038.774 634.364 940.73
    1349.442 851.293 536.254 039.274 651.864 945.12
    −801317.802 842.893 535.984 038.044 625.334 938.95
    1340.232 849.633 536.204 038.584 625.854 943.68
    下载: 导出CSV

    表  4  不同预紧力F下螺栓连接处的数据

    Table  4.   Data of bolted joints under different preloads F

    F/kN螺栓区域
    半径/mm
    ${A_2}$
    /mm2
    ${A_1}$
    /mm2
    ${K_{{\text{TL}}}}$/
    (109 N·m)
    ${E_2}$
    /GPa
    ${E_1}$
    /GPa
    517.63976.463969.269.35116.3500.689
    1017.63976.463969.269.43916.1210.790
    1517.63976.463969.269.48515.7220.911
    2017.63976.463969.269.52914.9081.130
    2517.63976.463969.269.57311.5591.980
    下载: 导出CSV
  • [1] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391.

    CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391(in Chinese).
    [2] 曹鹏. 带非线性支承转子系统动力学特性研究[D]. 北京: 北京航空航天大学, 2013.

    CAO P. Research on dynamic characteristics of rotor system with nonlinear supports[D]. Beijing: Beihang University, 2013(in Chinese).
    [3] 樊宁. 航空发动机连接结构刚度非线性及其对转子动力学的影响[D]. 北京: 北京航空航天大学, 2013.

    FAN N. Studies on dynamic characteristics of the joint in the aero-engine rotor system[D]. Beijing: Beihang University, 2013(in Chinese).
    [4] IBRAHIM R A, PETTIT C L. Uncertainties and dynamic problems of bolted joints and other fasteners[J]. Journal of Sound and Vibration, 2005, 279(3-5): 857-936.
    [5] 姚星宇, 程涵. 谐调螺栓连接对航空发动机静子系统动力学特性影响[J]. 科学技术与工程, 2021, 21(16): 6913-6922. doi: 10.3969/j.issn.1671-1815.2021.16.054

    YAO X Y, CHENG H. Influence of tuned bolted joints on dynamic characteristics of aero-engine stator system[J]. Science Technology and Engineering, 2021, 21(16): 6913-6922(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.16.054
    [6] 苏永雷. 拉杆松弛与组合转子性能退化的关联性研究[D]. 长沙: 中南大学, 2014.

    SU Y L. The correlation research of rod relaxation and performance degradation of combined rotor[D]. Changsha: Central South University, 2014(in Chinese).
    [7] 苏永雷, 王艾伦, 曾海楠. 拉杆松弛导致预紧失谐组合转子性能退化研究[J]. 振动与冲击, 2015, 34(20): 21-26. doi: 10.13465/j.cnki.jvs.2015.20.005

    SU Y L, WANG A L, ZENG H N. Performance degradation of mistuned combined rotor considering rod relaxation[J]. Journal Vibration and Shock, 2015, 34(20): 21-26(in Chinese). doi: 10.13465/j.cnki.jvs.2015.20.005
    [8] GAUL L, LENZ J. Nonlinear dynamics of structures assembled by bolted joints[J]. Acta Mechanica, 1997, 125(1-4): 169-181.
    [9] WANG C, ZHANG D Y, ZHU X B, et al. Study on the stiffness loss and the dynamic influence on rotor system of the bolted flange joint[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014.
    [10] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part I-Model development and validation[J]. Composite Structures, 2005, 71(2): 140-158.
    [11] AHMADIAN H, JALALI H. Identification of bolted lap joints parameters in assembled structures[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 1041-1050.
    [12] SCHWINGSHACKL C W, MAIO D D, SEVER I, et al. Modeling and validation of the nonlinear dynamic behavior of bolted flange joints[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(12): 122504.
    [13] 姚星宇, 王建军, 翟学. 航空发动机螺栓连接薄层单元建模方法[J]. 北京航空航天大学学报, 2015, 41(12): 2269-2279. doi: 10.13700/j.bh.1001-5965.2014.0796

    YAO X Y, WANG J J, ZHAI X. Modeling method of bolted joints of aero-engine based on thin-layer element[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2269-2279(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0796
    [14] 郭宁, 黄庆, 曹善成, 等. 基于模型修正的螺栓连接板结构动力学建模方法[J]. 工程力学, 2021, 38(6): 1-9. doi: 10.6052/j.issn.1000-4750.2020.04.ST01

    GUO N, HUANG Q, CAO S C, et al. Structural dynamic modeling method of bolted joint plates based on model updating[J]. Engineering Mechanics, 2021, 38(6): 1-9(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.04.ST01
    [15] YAO X Y, WANG J J, ZHAI X. Research and application of improved thin-layer element method of aero-engine bolted joints[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(5): 823-839. doi: 10.1177/0954410016643978
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  42
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 录用日期:  2021-12-24
  • 网络出版日期:  2022-01-25
  • 整期出版日期:  2023-05-31

目录

    /

    返回文章
    返回
    常见问答