留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载GNSS-R土壤湿度反演中开放水域的影响

杨文涛 徐天河 王娜子 高凡 荆丽丽 贺匀峤

杨文涛,徐天河,王娜子,等. 星载GNSS-R土壤湿度反演中开放水域的影响[J]. 北京航空航天大学学报,2023,49(7):1779-1786 doi: 10.13700/j.bh.1001-5965.2021.0479
引用本文: 杨文涛,徐天河,王娜子,等. 星载GNSS-R土壤湿度反演中开放水域的影响[J]. 北京航空航天大学学报,2023,49(7):1779-1786 doi: 10.13700/j.bh.1001-5965.2021.0479
YANG W T,XU T H,WANG N Z,et al. Influence of open water in retrieval of soil moisture by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1779-1786 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0479
Citation: YANG W T,XU T H,WANG N Z,et al. Influence of open water in retrieval of soil moisture by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1779-1786 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0479

星载GNSS-R土壤湿度反演中开放水域的影响

doi: 10.13700/j.bh.1001-5965.2021.0479
基金项目: 国家自然科学基金(41604003,41704017,41704018,41874032,41931076);国家重点研发计划(2020YFB0505800)
详细信息
    通讯作者:

    E-mail: thxu@sdu.edu.cn

  • 中图分类号: P237

Influence of open water in retrieval of soil moisture by spaceborne GNSS-R

Funds: National Natural Science Foundation of China (41604003,41704017,41704018,41874032,41931076);National Key R & D Program of China (2020YFB0505800)
More Information
  • 摘要:

    通过星载全球导航卫星系统-反射测量(GNSS-R)技术可以获取高时空分辨率的土壤湿度(SM)信息,但开放水域会影响反演结果的精度。针对此问题,提出一种开放水域剔除的改进方法。校正其模拟功率得出反射率,结合掩膜数据精确剔除开放水域。为验证改进方法的可行性,处理了2个开放水域比较密集的试验区内为期一年的飓风全球导航卫星系统(CYGNSS) 1级数据。反演结果与主被动土壤湿度(SMAP)3级土壤湿度产品进行对比分析,其均方根误差为0.052 1 cm3/cm3,相关性为0.654。与开放水域剔除前的结果相比分别提升6.2%和9%;与CYGNSS官方发布的产品相比分别提升32%和24%。反演结果可以作为SMAP的SM补充,提供高时间分辨率的SM值。

     

  • 图 1  GSWE的季节性产品

    Figure 1.  GSWE's seasonal products

    图 2  巴拉那河流域和博多河流域光学影像

    Figure 2.  Optical images of Paraná river basin and Bodo river basin

    图 3  入射角与反射率的关系

    Figure 3.  Relationship between incident angle and reflectivity

    图 4  在开放水域中的镜面反射点

    Figure 4.  Specular reflection point in open water

    图 5  巴拉那河流域和博多河流域2020年1月~2020年2月的反射率

    Figure 5.  Reflectivity of Paraná river basin and bodo river basin from january to february 2020

    图 6  巴拉那河流域和博多河流域开放水域剔除后的反射率

    Figure 6.  Reflectivity after removing open water in Paraná river basin and Bodo river basin

    图 7  巴拉那河流域和博多河流域的反演结果的相关性分析

    Figure 7.  Correlation analysis of retrieval results of Paraná river basin and Bodo river basin

    图 8  巴拉那河流域和博多河流域的反演结果的RMSE分析

    Figure 8.  Retrieval results of Paraná river basin and Bodo river basin, respectively root mean square error analysis

    图 9  CYGNSS反演结果与SMAP土壤湿度值的比较

    Figure 9.  Comparison of CYGNSS retrieval results and SMAP soil moisture

    表  1  式(4)中变量和所对应的CYGNSS数据集参数

    Table  1.   Variables in Eq. (4) and corresponding CYGNSS dataset parameters

    变量CYGNSS数据集参数
    $ {P}_{\mathrm{r}}^{\mathrm{t}}{G}^{\mathrm{t}} $gps_eirp
    $ {G}^{\mathrm{r}} $sp_rx_gain
    $ {R}_{\mathrm{t}\mathrm{s}} $tx_to_sp_range
    $ {R}_{\mathrm{s}\mathrm{r}} $rx_to_sp_range
    下载: 导出CSV

    表  2  开放水域剔除后的CYGNSS的SM反演结果

    Table  2.   CYGNSS of SM retrieval results after removing open water

    区域RRMSE/ (cm3·cm−3)
    巴拉那河流域0.616 70.045 8
    博多河流域0.673 40.056 2
    2个区域总计0.653 70.052 1
    下载: 导出CSV

    表  3  未考虑开放水域CYGNSS的SM反演结果

    Table  3.   CYGNSS of SM inversion results without considering open water

    区域RRMSE/ (cm3·cm−3)
    巴拉那河流域0.57000.0477
    博多河流域0.63130.0589
    2个区域总计0.60190.0553
    下载: 导出CSV

    表  4  UCAR\CU的SM反演结果

    Table  4.   Retrieval results of SM from UCAR\CU

    区域RRMSE/ (cm3·cm−3)
    巴拉那河流域0.522 10.085 0
    博多河流域0.529 60.073 6
    2个区域总计0.527 60.076 8
    下载: 导出CSV
  • [1] ENTEKHABI D, RODRIGUEZ-ITURBE I, CASTELLI F. Mutual interaction of soil moisture state and atmospheric processes[J]. Journal of Hydrology, 1996, 184(1-2): 3-17. doi: 10.1016/0022-1694(95)02965-6
    [2] KUENZER C, GUO H D, HUTH J, et al. Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses[J]. Remote Sensing, 2013, 5(2): 687-715. doi: 10.3390/rs5020687
    [3] 杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 北京: 电子工业出版社, 2012.

    YANG D K, ZHANG Q S. GNSS reflected signal processing: Fundamentals and applications[M]. Beijing: Publishing House of Electronics Industry, 2012 (in Chinese).
    [4] 李黄, 夏青, 尹聪, 等. 我国GNSS-R遥感技术的研究现状与未来发展趋势[J]. 雷达学报, 2013, 2(4): 389-399.

    LI H, XIA Q, YIN C, et al. The Current status of research on GNSS-R remote sensing technology in China and future development[J]. Journal of Radars, 2013, 2(4): 389-399(in Chinese).
    [5] 汉牟田, 张波, 杨东凯, 等. 利用GNSS干涉信号振荡幅度反演土壤湿度[J]. 测绘学报, 2016, 45(11): 1293-1300. doi: 10.11947/j.AGCS.2016.20160145

    HAN M T, ZHANG B, YANG D K, et al. Soil moisture retrieval utilizing GNSS interference signal amplitude[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1293-1300(in Chinese). doi: 10.11947/j.AGCS.2016.20160145
    [6] 严颂华, 龚健雅, 张训械, 等. GNSS-R测量地表土壤湿度的地基实验[J]. 地球物理学报, 2011, 54(11): 2735-2744. doi: 10.3969/j.issn.0001-5733.2011.11.003

    YAN S H, GONG J Y, ZHANG X X, et al. Ground based GNSS-R observations for soil moisture[J]. Chinese Journal of Geophysics, 2011, 54(11): 2735-2744(in Chinese). doi: 10.3969/j.issn.0001-5733.2011.11.003
    [7] FOTI G, GOMMENGINGER C, JALES P, et al. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission[J]. Geophysical Research Letters, 2015, 42(13): 5435-5441. doi: 10.1002/2015GL064204
    [8] CHEW C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission[J]. Geophysical Research Letters, 2016, 43(7): 3317-3324. doi: 10.1002/2016GL068189
    [9] CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4730-4742. doi: 10.1109/JSTARS.2016.2588467
    [10] YAN Q Y, HUANG W M, JIN S G, et al. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data[J]. Remote Sensing of Environment, 2020, 247: 111944. doi: 10.1016/j.rse.2020.111944
    [11] CHEW C C, SMALL E E. Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture[J]. Geophysical Research Letters, 2018, 45(9): 4049-4057. doi: 10.1029/2018GL077905
    [12] KIM H, LAKSHMI V. Use of cyclone global navigation satellite system (CyGNSS) observations for estimation of soil moisture[J]. Geophysical Research Letters, 2018, 45(16): 8272-8282. doi: 10.1029/2018GL078923
    [13] CLARIZIA M P, PIERDICCA N, COSTANTINI F, et al. Analysis of CYGNSS data for soil moisture retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2227-2235. doi: 10.1109/JSTARS.2019.2895510
    [14] DONG Z N, JIN S G. Evaluation of the land GNSS-reflected DDM coherence on soil moisture estimation from CYGNSS data[J]. Remote Sensing, 2021, 13(4): 570. doi: 10.3390/rs13040570
    [15] YANG T, WAN W, SUN Z G, et al. Comprehensive evaluation of using TechDemoSat-1 and CYGNSS data to estimate soil moisture over mainland China[J]. Remote Sensing, 2020, 12(11): 1699. doi: 10.3390/rs12111699
    [16] CHEW C, SMALL E. Description of the UCAR/CU soil moisture product[J]. Remote Sensing, 2020, 12(10): 1558. doi: 10.3390/rs12101558
    [17] RUF C S, ATLAS R, CHANG P S, et al. New Ocean winds satellite mission to probe hurricanes and tropical convection[J]. Bulletin of the American Meteorological Society, 2016, 97(3): 385-395. doi: 10.1175/BAMS-D-14-00218.1
    [18] RUF C, ASHARAF S, BALASUBRAMANIAM R, et al. In-orbit performance of the constellation of CYGNSS hurricane satellites[J]. Bulletin of the American Meteorological Society, 2019, 100(10): 2009-2023. doi: 10.1175/BAMS-D-18-0337.1
    [19] PEKEL J F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422. doi: 10.1038/nature20584
    [20] ENTEKHABI D, NJOKU E G, O'NEILL P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716. doi: 10.1109/JPROC.2010.2043918
    [21] NGHIEM S V, ZUFFADA C, SHAH R, et al. Wetland monitoring with global navigation satellite system reflectometry[J]. Earth and Space Science, 2017, 4(1): 16-39. doi: 10.1002/2016EA000194
    [22] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. doi: 10.1109/36.841977
    [23] VORONOVICH A G, ZAVOROTNY V U. Bistatic radar equation for signals of opportunity revisited[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(4): 1959-1968.
    [24] DE ROO R D, ULABY F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231. doi: 10.1109/8.277216
    [25] ULABY F T, LONG D G, BLACKWELL W, et al. Microwave radar and radiometric remote sensing[M]. Norwood: Artech House, 2013.
    [26] WANG T L, RUF C S, BLOCK B, et al. Design and performance of a GPS constellation power monitor system for improved CYGNSS L1B calibration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 12(1): 26-36.
    [27] RODRIGUEZ-ALVAREZ N, PODEST E, JENSEN K, et al. Classifying inundation in a tropical wetlands complex with GNSS-R[J]. Remote Sensing, 2019, 11(9): 1053. doi: 10.3390/rs11091053
    [28] YANG W T, XU T H, WANG N Z, et al. Research on the method of precisely removing open water in the retrieval of soil moisture by spaceborne GNSS-R[C]//Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2021: 22-32.
    [29] CAMPS A, PARK H, CASTELLVÍ J, et al. Single-pass soil moisture retrievals using GNSS-R: Lessons learned[J]. Remote Sensing, 2020, 12(12): 2064. doi: 10.3390/rs12122064
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  60
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-17
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答