留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑任务分配的无人机信息交互拓扑生成

薛莹 何锋 谷晓燕

薛莹,何锋,谷晓燕. 考虑任务分配的无人机信息交互拓扑生成[J]. 北京航空航天大学学报,2023,49(7):1787-1795 doi: 10.13700/j.bh.1001-5965.2021.0486
引用本文: 薛莹,何锋,谷晓燕. 考虑任务分配的无人机信息交互拓扑生成[J]. 北京航空航天大学学报,2023,49(7):1787-1795 doi: 10.13700/j.bh.1001-5965.2021.0486
XUE Y,HE F,GU X Y. UAV information interaction topology generation considering task allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1787-1795 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0486
Citation: XUE Y,HE F,GU X Y. UAV information interaction topology generation considering task allocation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1787-1795 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0486

考虑任务分配的无人机信息交互拓扑生成

doi: 10.13700/j.bh.1001-5965.2021.0486
基金项目: 国家自然科学基金(62071023)
详细信息
    通讯作者:

    E-mail:robinleo@buaa.edu.cn

  • 中图分类号: V243.1;N945.15

UAV information interaction topology generation considering task allocation

Funds: National Natural Science Foundation of China (62071023)
More Information
  • 摘要:

    无人机(UAV)持久编队信息交互拓扑的优化是保证UAV编队结构稳定性和任务执行时效性的重要基础。现有的编队生成算法针对距离因素进行权重赋值和拓扑生成,由于未考虑任务分配因素,可能会引起整体任务执行时间过长甚至任务失败的问题,对UAV的能量也造成了不必要的损耗。以任务消息传输时间和能量损耗为关键优化目标,在保证UAV编队结构稳定的前提下,提出考虑任务分配因素的信息交互拓扑生成算法,优先连接承载实时性要求较高通信任务的关键汇聚链路,对剩余链路通过引入惩罚项,在权重上进一步将任务消息传输量因素考虑在内,生成最终的信息交互拓扑。使用OMNet++进行仿真验证,相比于只考虑距离因素的信息交互拓扑生成算法,所提算法在20架UAVs编队场景下,消息传输时间方面最高降低57.3%,最低降低28.1%,关键任务消息的到达时延降低了45.2%~51.6%,而任务执行过程单UAV的能量损耗总体减少了17.5%,平均每个节点减少损耗16.1%。

     

  • 图 1  通信链路集合关系示意图

    Figure 1.  Schematic diagram of relationship between communication link sets

    图 2  同一组无人机的不同的最小刚性图

    Figure 2.  Different minimum rigidity diagrams of same group of UAVs

    图 3  任务分配与消息传递关系示意图

    Figure 3.  Relationship diagram between task allocation and message passing

    图 4  本文算法流程

    Figure 4.  Flow chart of proposed algorithm

    图 5  小规模案例使用2种算法生成的信息交互拓扑

    Figure 5.  Information interaction topology generated by two algorithms in small-scale cases

    图 6  小规模实验时2种算法生成的拓扑下部分无人机任务执行结果对比

    Figure 6.  Comparison of task execution results under two algorithms’ topologies in small-scale experiment

    图 7  2种算法下执行任务的能量消耗情况

    Figure 7.  Energy consumption of tasks under two algorithms

    图 8  复杂案例使用2种算法生成的信息交互拓扑图

    Figure 8.  Information interaction topology generated by two algorithms in complex cases

    图 9  2种算法生成的拓扑下部分无人机任务执行结果对比

    Figure 9.  Comparison of mission execution results of some UAVs under two algorithms’ topologies

    图 10  复杂场景下2种算法下执行任务的能量消耗情况

    Figure 10.  Energy consumption of tasks under two algorithms in complex experiment

    表  1  任务列表

    Table  1.   Task list

    任务组任务时间/s耗费资源后继任务
    目标侦测TD1203TD3
    TD2164TD3
    TD3208TP1
    搜索锁定TT1137TT2
    TT22010TP1
    综合导航TN1104TN5
    TN2174TN5
    TN3144TN5
    TN4135TN5
    TN5209
    信息融合TP1203TP3,TF1,TF2
    TP2161TP3,TF1,TF2
    TP3206TN5
    火力攻击TF11410TF3
    TF21310TF3
    TF31810
    下载: 导出CSV

    表  2  任务分配方案

    Table  2.   Task assignment scheme

    编号任务对应无人机后继任务
    1TD1UAV1TD3
    2TD2UAV2TD3
    3TD3UAV1TP1
    4TT1UAV3TT2
    5TT2UAV4TP1
    6TN1UAV2TN5
    7TN2UAV3TN5
    8TN3UAV6TN5
    9TN4UAV5TN5
    10TN5UAV1
    11TP1UAV8TP3,TF1,TF2
    12TP2UAV7TP3,TF1,TF2
    13TP3UAV8TN5
    14TF1UAV9TF3
    15TF2UAV10TF3
    16TF3UAV7
    下载: 导出CSV
  • [1] LUO F, JIANG C X, DU J, et al. A distributed gateway selection algorithm for UAV networks[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 3(1): 22-33.
    [2] DUTTA R, SUN L, PACK D. A decentralized formation and network connectivity tracking controller for multiple unmanned systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2206-2213. doi: 10.1109/TCST.2017.2740837
    [3] HE B, ZHANG X Y, LI Q Y. Effectiveness measurement of UAV combat in uncertain environment[J]. Journal of Physics:Conference Series, 2018, 1069(1): 012048.
    [4] 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380.

    DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380(in Chinese).
    [5] LI W, WANG L, LI H B. Design of distributed time-cooperative guidance of multiple flight vehicles with un-controllable velocity[C]//2019 Chinese Control and Decision Conference. Piscataway: IEEE Press, 2019: 2419-2425.
    [6] 王国强. 面向队形保持的无人机编队信息交互拓扑优化问题的研究[D]. 合肥: 合肥工业大学, 2016: 19.

    WANG G Q. Research on information exchange topology optimization problem of UAV formation during formation keeping[D]. Hefei: Hefei University of Technology, 2016: 19 (in Chinese) .
    [7] PRIOLO A, WILLIAMS R K, GASPARRI A, et al. Decentralized algorithms for optimally rigid network constructions[C]//2014 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2014: 5010-5015.
    [8] HENDRICKX J M, ANDERSON B D O, DELVENNE J C, et al. Directed graphs for the analysis of rigidity and persistence in autonomous agent systems[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 960-981. doi: 10.1002/rnc.1145
    [9] 赵诗雪, 赵太飞, 刘昆, 等. 基于无线紫外光MIMO通信的优化持久编队算法[J]. 激光杂志, 2020, 41(10): 8-13. doi: 10.14016/j.cnki.jgzz.2020.10.008

    ZHAO S X, ZHAO T F, LIU K, et al. Algorithm on optimal persistent formation based on wireless ultraviolet MIMO communication[J]. Laser Journal, 2020, 41(10): 8-13(in Chinese). doi: 10.14016/j.cnki.jgzz.2020.10.008
    [10] 罗贺, 李晓多, 王国强. 能耗均衡的三维最优持久编队通信拓扑生成[J]. 航空学报, 2022, 43(1): 324922.

    LUO H, LI X D, WANG G Q. Generation of three dimensional optimal persistent formation communication topology with energy consumption equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324922(in Chinese).
    [11] 王金然, 罗小元, 杨帆, 等. 三维最优持久编队拓扑生成策略[J]. 自动化学报, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474

    WANG J R, LUO X Y, YANG F, et al. Generation strategy of optimal persistent formation topology in 3D space[J]. Acta Automatica Sinica, 2015, 41(6): 1123-1130(in Chinese). doi: 10.16383/j.aas.2015.c140474
    [12] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [13] LUO X Y, SHAO S K, ZHANG Y Y, et al. Generation of minimally persistent circle formation for a multi-agent system[J]. Chinese Physics B, 2014, 23(2): 614-622.
    [14] EREN T, ANDERSON B, MORSE A S, et al. Operations on rigid formations of autonomous agents[J]. Communications in Information and Systems, 2003, 3(4): 223-258. doi: 10.4310/CIS.2003.v3.n4.a2
    [15] LUO X Y, LI S B, GUAN X P. Automatic generation of Min-weighted persistent formations[J]. Chinese Physics B, 2009, 18(8): 3104-3114. doi: 10.1088/1674-1056/18/8/002
    [16] 罗小元, 杨帆, 李绍宝, 等. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40(7): 1311-1319.

    LUO X Y, YANG F, LI S B, et al. Generation of optimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2014, 40(7): 1311-1319(in Chinese).
    [17] 邵士凯. 多智能体系统最优持久编队生成与圆形编队控制[D]. 秦皇岛: 燕山大学, 2013: 1-66.

    SHAO S K. Optimally persistent formation generation and circle formation control for multi-agent syetems[D]. Qinhuangdao: Yanshan University, 2013: 1-66 (in Chinese).
    [18] 刘伟, 周绍磊, 祁亚辉, 等. 有向切换通信拓扑下多无人机分布式编队控制[J]. 控制理论与应用, 2015, 32(10): 1422-1427. doi: 10.7641/CTA.2015.50478

    LIU W, ZHOU S L, QI Y H, et al. Distributed formation control for multiple unmanned aerial vehicles with directed switching communication topologies[J]. Control Theory & Applications, 2015, 32(10): 1422-1427(in Chinese). doi: 10.7641/CTA.2015.50478
    [19] 程潇. 无人机编队组网技术研究[D]. 南京: 南京大学, 2019: 25-38.

    CHENG X. Research on networking techniques of unmanned aerial vehicle formation[D]. Nanjing: Nanjing University, 2019: 25-38 (in Chinese).
    [20] 张小庆, 胡亚捷. 基于优先级与关键路径的工作流任务调度算法研究[J]. 武汉轻工大学学报, 2021, 40(2): 59-67. doi: 10.3969/j.issn.2095-7386.2021.02.011

    ZHANG X Q, HU Y J. Research on workflow tasks scheduling algorithm based on priority and critical path[J]. Journal of Wuhan Polytechnic University, 2021, 40(2): 59-67(in Chinese). doi: 10.3969/j.issn.2095-7386.2021.02.011
    [21] 邓启波. 多无人机协同任务规划技术研究[D]. 北京: 北京理工大学, 2014: 28-55.

    DENG Q B. Cooperative task planning of multiple unmanned aerial vehicles[D]. Beijing: Beijing Institute of Technology, 2014: 28-55 (in Chinese) .
    [22] 马霓, 孙礼, 贾群力, 等. 无线通信网络中点到点对等通信无线链接建立和保持的方法与装置: 中国, CN1527623A[P]. 2004-09-08.

    MA N, SUN L, JIA Q L, et al. Method and apparatus for establishing and retaining point-to-point communication radio chaining in radio communication network: China, CN1527623A[P]. 2004-09-08 (in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  58
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2021-11-26
  • 网络出版日期:  2022-01-25
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答