留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下表面射流的超临界翼型气动性能分析

王若尘 张国鑫 王翔宇 马晓平

王若尘,张国鑫,王翔宇,等. 下表面射流的超临界翼型气动性能分析[J]. 北京航空航天大学学报,2023,49(7):1671-1679 doi: 10.13700/j.bh.1001-5965.2021.0489
引用本文: 王若尘,张国鑫,王翔宇,等. 下表面射流的超临界翼型气动性能分析[J]. 北京航空航天大学学报,2023,49(7):1671-1679 doi: 10.13700/j.bh.1001-5965.2021.0489
WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0489
Citation: WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0489

下表面射流的超临界翼型气动性能分析

doi: 10.13700/j.bh.1001-5965.2021.0489
基金项目: 国家自然科学基金(61901448); 中国科学院青年创新促进会(2020149)
详细信息
    通讯作者:

    E-mail:zhangguoxin@iet.cn

  • 中图分类号: V211.3

Aerodynamic performance analysis of supercritical airfoil with lower surface jet

Funds: National Natural Science Foundation of China (61901448); Youth Innovation Promotion Association of Chinese Academy of Sciences (2020149)
More Information
  • 摘要:

    为探究下表面射流关键参数对超临界翼型气动性能的影响,采用雷诺平均Navier-Stokes (RANS)方程与Spalart-Allmaras (S-A)湍流模型进行数值模拟。通过比较基准RAE2822翼型与下表面射流翼型的流场,验证下表面射流能够在翼型后缘诱导产生逆时针分离涡,带动流线向下偏折,增加了翼型的等效弯度,同时加大前缘的吸力峰,从而提高翼型的气动性能。进一步探究射流位置、射流动量系数、射流角度、马赫数等关键参数对RAE2822翼型气动性能的影响规律。结果表明:给定状态下,下表面射流的位置越靠后,动量系数越大,翼型的气动性能越优。下表面射流在α=0°和2°时的最优射流角度为110°,在α=4°时的最优射流角度为160°,且在最优射流角度下能有效提高翼型马赫数在0.3~0.6范围内的气动性能。

     

  • 图 1  RAE2822翼型下表面射流参数示意图

    Figure 1.  Diagram of jet parameters of RAE2822 airfoil lower surface

    图 2  RAE2822翼型计算网格

    Figure 2.  Computational grids of RAE2822 airfoil

    图 3  RAE2822压力系数分布对比

    Figure 3.  Comparison of pressure coefficient distribution of RAE2822

    图 4  CC020-010EJ翼型计算网格

    Figure 4.  Computational grids of CC020-010EJ airfoil

    图 5  CC020-010EJ压力系数分布对比

    Figure 5.  Comparison of pressure coefficient distribution of CC020-010EJ

    图 6  RAE2822下表面射流翼型计算网格

    Figure 6.  Computational grids of jet airfoil of RAE2822 lower surface

    图 7  马赫云图与流线图对比

    Figure 7.  Comparison of Mach contours and streamlines

    图 8  有/无射流压力系数分布对比

    Figure 8.  Comparison of pressure coefficient distribution with/without jet

    图 9  不同射流位置气动力系数对比

    Figure 9.  Comparison of aerodynamic coefficients at different jet positions

    图 10  不同射流位置马赫云图与流线图对比

    Figure 10.  Comparison of Mach contours and streamlines at different jet positions

    图 11  不同射流动量系数下气动力系数对比图

    Figure 11.  Comparison of aerodynamic coefficients at different jet momentum coefficients

    图 12  不同射流角度下各个气动力系数对比

    Figure 12.  Comparison of aerodynamic coefficients at different jet angles

    图 13  不同马赫数下各个气动力系数对比

    Figure 13.  Comparison of aerodynamic coefficients at different Mach numbers

    表  1  RAE2822翼型网格参数与气动力系数的对比

    Table  1.   Comparison of grid parameters and aerodynamic coefficients of RAE2822 airfoil

    网格网格数量CLCD
    实验值[21]0.8030.0168
    粗网格233240.760310.016989
    中等网格409640.766520.017031
    细网格691880.769280.017094
     注:3套网格与实验值相比,CL误差5.3%,4.5%,4.2%,CD误差为1.1%,1.3%,1.8%。
    下载: 导出CSV

    表  2  CC020-010EJ翼型气动力系数的对比

    Table  2.   Comparison of aerodynamic coefficients of CC020-010EJ airfoil

    结果CLCD
    计算值1.5430.0348
    文献[22]数值结果1.5330.0367
    实验值[22]1.3630.0312
     注:本文,文献[22]计算值与实验值相比,CL误差为13.2%,12.4%,CD误差为11.5%,17.6%。
    下载: 导出CSV

    表  3  下表面射流计算参数

    Table  3.   Computational parameters of lower surface jet

    Ma Re α/(°) cμ xj θ/(°)
    0.6 5.35×106 4 0.005 0.98c 90
    下载: 导出CSV

    表  4  不同射流位置下的计算参数

    Table  4.   Computational parameters of different jet positions

    Ma Re α/(°) cμ xj θ/(°)
    0.6 5.35×106 −4~16 0.005 0.8c,0.9c,0.98c 90
    下载: 导出CSV

    表  5  不同射流动量系数下的计算参数

    Table  5.   Computational parameters of different jet momentum coefficients

    Ma Re α/(°) cμ xj θ/(°)
    0.6 5.35×106 −4~16 0.0005,0.001,0.005 0.98c 90
    下载: 导出CSV

    表  6  4°迎角下不同射流动量系数翼型的气动力系数

    Table  6.   Aerodynamic coefficients of airfoil with different jet momentum coefficients at angle of attack 4°

    cμCLCDCL /CD
    00.779820.01309559.55
    0.00050.930050.01412165.86
    0.0010.980810.01436668.27
    0.0051.17010.01533776.29
    下载: 导出CSV

    表  7  不同射流角度计算参数

    Table  7.   Computational parameters of different jet angles

    Ma Re α/(°) cμ xj θ/(°)
    0.6 5.35×106 0,2,4 0.005 0.98c 10~170
    下载: 导出CSV

    表  8  不同马赫数下的计算参数

    Table  8.   Computational parameters of different Mach numbers

    Ma Re α/(°) cμ xj θ/(°)
    0.3~0.6 2.68×106~5.35×106 0、2、4 0.005 0.98c 110,160
    下载: 导出CSV
  • [1] SCOTT COLLIS S, JOSLIN R D, SEIFERT A, et al. Issues in active flow control: Theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences, 2004, 40(4-5): 237-289. doi: 10.1016/j.paerosci.2004.06.001
    [2] ASHILL P R, FULKER J L, HACKETT K C. A review of recent developments in flow control[J]. The Aeronautical Journal, 2005, 109(1095): 205-232. doi: 10.1017/S0001924000005200
    [3] SHMILOVICH A, YADLIN Y. Active flow control for practical high-lift systems[J]. Journal of Aircraft, 2009, 46(4): 1354-1364. doi: 10.2514/1.41236
    [4] FU Z J, CHU Y W, CAI Y S, et al. Numerical investigation of circulation control applied to flapless aircraft[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(6): 879-893. doi: 10.1108/AEAT-10-2019-0208
    [5] REN F, HU H, TANG H. Active flow control using machine learning: A brief review[J]. Journal of Hydrodynamics, 2020, 32(2): 247-253. doi: 10.1007/s42241-020-0026-0
    [6] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428.

    ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese).
    [7] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2017, 56: 554-570.
    [8] SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [9] 雷玉昌, 张登成, 张艳华. 环量控制翼型非定常气动力建模[J]. 北京航空航天大学学报, 2021, 47(10): 209-219. doi: 10.13700/j.bh.1001-5965.2020.0360

    LEI Y C, ZHANG D C, ZHANG Y H. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 209-219(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0360
    [10] 雷玉昌, 张登成, 张艳华, 等. 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485-494.

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494(in Chinese).
    [11] ZHA G C, CARROLL B F, PAXTON C D, et al. High-performance airfoil using coflow jet flow control[J]. AIAA Journal, 2007, 45(8): 2087-2090. doi: 10.2514/1.20926
    [12] LEFEBVRE A, DANO B, BARTOW W B, et al. Performance and energy expenditure of coflow jet airfoil with variation of mach number[J]. Journal of Aircraft, 2016, 53(6): 1757-1767. doi: 10.2514/1.C033113
    [13] XU K W, ZHA G C. High control authority three-dimensional aircraft control surfaces using coflow jet[J]. Journal of Aircraft, 2021, 58(1): 72-84. doi: 10.2514/1.C035727
    [14] 刘沛清, 旷建敏, 屈秋林. 联合射流控制技术的增升效果和机理[J]. 北京航空航天大学学报, 2009, 35(6): 737-740. doi: 10.13700/j.bh.1001-5965.2009.06.011

    LIU P Q, KUANG J M, QU Q L. Effect and mechanism of lift-enhancement of the co-flow jet technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 737-740(in Chinese). doi: 10.13700/j.bh.1001-5965.2009.06.011
    [15] 许建华, 李凯, 宋文萍, 等. 低雷诺数下协同射流关键参数对翼型气动性能的影响[J]. 航空学报, 2018, 39(8): 122018.

    XU J H, LI K, SONG W P, et al. Influence of co-flow jet key parameters on airfoil aerodynamic performance at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122018(in Chinese).
    [16] 张志勇, 王团团, 陈志华, 等. 低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J]. 空气动力学学报, 2020, 38(1): 58-65.

    ZHANG Z Y, WANG T T, CHEN Z H, et al. The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds number[J]. Acta Aerodynamica Sinica, 2020, 38(1): 58-65(in Chinese).
    [17] HUANG L, HUANG P G, LEBEAU R P, et al. Numerical study of blowing and suction control mechanism on NACA0012 airfoil[J]. Journal of Aircraft, 2004, 41(5): 1005-1013. doi: 10.2514/1.2255
    [18] GENÇ M, KAYNAK Ü. Control of flow separation and transition point over an aerofoil at low Re number using simultaneous blowing and suction[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009: 3672.
    [19] 付云豪, 章卫国, 史静平, 等. 下表面射流对翼型气动性能影响的数值模拟[J]. 哈尔滨工业大学学报, 2021, 53(6): 48-53. doi: 10.11918/201912027

    FU Y H, ZHANG W G, SHI J P, et al. Numerical simulation of influence of jet at lower surface on aerodynamic performance of airfoil[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 48-53(in Chinese). doi: 10.11918/201912027
    [20] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. doi: 10.2514/1.J056223
    [21] COOK P, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements, experimental data base for computer program assessment: AGARD Report AR-138[R]. Advanced Guidance for Alliance Research and Development, Part of NATO Science & Technology Organization, 1979, 138: 47.
    [22] ENGLAR R, JONES G, ALLAN B, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 902.
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  62
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2021-09-10
  • 网络出版日期:  2021-09-24
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答