留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

撤机对离心血泵血液相容性影响的数值研究

谢楠 唐雨萌 张岩 柳阳威

谢楠,唐雨萌,张岩,等. 撤机对离心血泵血液相容性影响的数值研究[J]. 北京航空航天大学学报,2023,49(7):1680-1688 doi: 10.13700/j.bh.1001-5965.2021.0494
引用本文: 谢楠,唐雨萌,张岩,等. 撤机对离心血泵血液相容性影响的数值研究[J]. 北京航空航天大学学报,2023,49(7):1680-1688 doi: 10.13700/j.bh.1001-5965.2021.0494
XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0494
Citation: XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0494

撤机对离心血泵血液相容性影响的数值研究

doi: 10.13700/j.bh.1001-5965.2021.0494
基金项目: 国家自然科学基金(51976006,52106039);航空科学基金(2018ZB51013)
详细信息
    通讯作者:

    E-mail:liuyangwei@126.com

  • 中图分类号: V239;R318

Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump

Funds: National Natural Science Foundation of China (51976006,52106039); Aeronautical Science Foundation of China (2018ZB51013)
More Information
  • 摘要:

    采用非定常数值模拟方法系统评估某离心血泵原型与改型在4个撤机阶段的血流动力学特性和血液相容性。对速度、湍动能、叶表压力的分布规律及不同撤机阶段的血液损伤进行研究,并对各监测点的压力脉动进行分析。研究结果表明:在降低心脏泵流量和供压的第1阶段(撤机阶段Ⅰ),原型和改型均有较好的血液相容性,满足抗溶血和抗血栓的性能要求,间隙泄漏涡是造成溶血主要的流动特征;随着撤机的进行,间隙泄漏涡强度明显减弱,溶血值呈显著的下降趋势,其脉动幅度也大大降低,改型的溶血值比原型减少30%以上;各监测点压力频谱呈现典型的离散特征,相较于原型,改型的转静干涉作用更加强烈,对血泵的电磁控制技术提出更高的要求。

     

  • 图 1  血泵原型与改型的俯视图及正视图

    Figure 1.  Top and front views of datum and modified blood pumps

    图 2  原型叶轮表面网格

    Figure 2.  Surface grid of datum impeller

    图 3  半叶高截面速度云图

    Figure 3.  Velocity counters at mid span plane of impeller

    图 4  原型血泵半径r=14 mm湍动能云图

    Figure 4.  Turbulent kinetic energy counters at r=14 mm plane of datum pump

    图 5  改型血泵半径r=14 mm湍动能云图

    Figure 5.  Turbulent kinetic energy counters at r=14 mm plane of modified pump

    图 6  原型血泵叶表相对压力分布

    Figure 6.  Distribution of relative pressure on blade surface of datum pump

    图 7  改型血泵叶表相对压力分布

    Figure 7.  Distribution of relative pressure on blade surface of modified pump

    图 8  不同撤机阶段的瞬时溶血值

    Figure 8.  Transient NIH of different weaning stages

    图 9  不同撤机阶段的溶血平均值

    Figure 9.  Mean value of NIH in different blood pump weaning stages

    图 10  监测点分布

    Figure 10.  Distribution of monitoring points

    图 11  原型泵内监测点压力脉动频域结果

    Figure 11.  Results of pressure fluctuation in frequency domain at monitoring points within the datum pump

    图 12  改型泵内监测点压力脉动频域结果

    Figure 12.  Results of pressure fluctuation in frequency domain at monitoring points within the modified pump

    表  1  血泵撤机阶段运行工况

    Table  1.   Operating conditions in blood pump weaning stage

    撤机阶段流量
    /
    (L·min−1)
    供压
    /
    Pa
    原型转速/
    (r·min−1)
    改型转速/
    (r·min−1)
    I3.02670732002622
    II2.51962027502255
    III2.01489224001971
    IV1.0 572815001237
    下载: 导出CSV
  • [1] 《中国心血管健康与疾病报告2020》编写组. 《中国心血管健康与疾病报告2020》概述[J]. 中国心血管病研究, 2021, 19(7): 582-590.

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China 2020. Key points of report on cardiovascular health and diseases in China 2020[J]. Chinese Journal of Cardiovascular Research, 2021, 19(7): 582-590(in Chinese).
    [2] 高洁, 李建朝, 程兆云, 等. 体外膜氧合辅助9例危重型新型冠状病毒肺炎患者疗效分析[J]. 中国体外循环杂志, 2020, 18(4): 203-207. doi: 10.13498/j.cnki.chin.j.ecc.2020.04.03

    GAO J, LI J C, CHENG Z Y, et al. Clinical analysis of COVID-19 patients supported by extracorporeal membrane oxygenation treatment[J]. Chinese Journal of Extracorporeal Circulation, 2020, 18(4): 203-207(in Chinese). doi: 10.13498/j.cnki.chin.j.ecc.2020.04.03
    [3] 王军红, 马青变. 体外心肺复苏撤机应注意的问题[J]. 中国急救医学, 2021, 41(7): 610-612. doi: 10.3969/j.issn.1002-1949.2021.07.016

    WANG J H, MA Q B. Problems needing attention in cardiopulmonary resuscitation[J]. Chinese Journal of Critical Care Medicine, 2021, 41(7): 610-612(in Chinese). doi: 10.3969/j.issn.1002-1949.2021.07.016
    [4] 马纪梅. 人工心脏的经皮传能系统的研究[D]. 天津: 河北工业大学, 2011.

    MA J M. Transcutaneous energy transmission system for artificial heart[D]. Tianjin: Hebei University of Technology, 2011 (in Chinese).
    [5] 李永乐. 离心式心脏泵流场数值计算与分析[D]. 兰州: 兰州理工大学, 2011.

    LI Y L. Numerical calculation and analysis about the flow field of centrifugal cardio pump[D]. Lanzhou: Lanzhou University of Technology, 2011 (in Chinese).
    [6] LIU Y W, YU X J, LIU B J. Turbulence models assessment for large-scale tip vortices in an axial compressor rotor[J]. Journal of Propulsion and Power, 2008, 24: 15-25. doi: 10.2514/1.26134
    [7] LIU Y W, ZHONG L Y, LU L P. Comparison of DDES and URANS for unsteady tip leakage flow in an axial compressor rotor[J]. Journal of Fluids Engineering, 2019, 141(12): 121405. doi: 10.1115/1.4043774
    [8] 展昭, 张岩, 桂幸民. 某轴流式血液泵的实验与改进设计[J]. 航空动力学报, 2008, 23(6): 1061-1066.

    ZHAN Z, ZHANG Y, GUI X M. Experiment and design improvement of an axial flow blood pump[J]. Journal of Aerospace Power, 2008, 23(6): 1061-1066(in Chinese).
    [9] 杨晓琛, 张岩, 桂幸民. 叶轮式辅助心脏泵装置优化设计[J]. 航空动力学报, 2011, 26(6): 1370-1376.

    YANG X C, ZHANG Y, GUI X M. Optimization and design of an impeller assist heart pump device[J]. Journal of Aerospace Power, 2011, 26(6): 1370-1376(in Chinese).
    [10] 张岩, 薛嵩, 桂幸民, 等. 运用三维数值模拟对人工心脏轴流血泵的设计和改进[J]. 中国生物医学工程学报, 2007, 26(1): 35-41. doi: 10.3969/j.issn.0258-8021.2007.01.007

    ZHANG Y, XUE S, GUI X M, et al. Digital simulation to the development of axial blood pump for artificial heart[J]. Chinese Journal of Biomedical Engineering, 2007, 26(1): 35-41(in Chinese). doi: 10.3969/j.issn.0258-8021.2007.01.007
    [11] 谢楠, 唐雨萌, 柳阳威, 等. 叶顶间隙对人工心脏泵血液相容性影响的数值研究[J]. 航空动力学报, 2021, 36(6): 1304-1314.

    XIE N, TANG Y M, LIU Y W, et al. Numerical research on effects of blade tip clearances on the hemocompatibility of artificial heart pump[J]. Journal of Aerospace Power, 2021, 36(6): 1304-1314(in Chinese).
    [12] ZHANG J T, GELLMAN B, KOERT A, et al. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump[J]. Artificial Organs, 2006, 30(3): 168-177. doi: 10.1111/j.1525-1594.2006.00203.x
    [13] FUNG Y C. Biomechanics: Mechanical properties of living tissues[M]. New York: Springer-Verlag, 1981.
    [14] MULHOLLAND J W, SHELTON J C, LUO X Y. Blood flow and damage by the roller pumps during cardiopulmonary bypass[J]. Journal of Fluids and Structures, 2005, 20(1): 129-140. doi: 10.1016/j.jfluidstructs.2004.10.008
    [15] HUANG C R, FABISIAK W. A rheological equation characterizing both the time dependent and the steady state viscosity of whole human blood[J]. AIChE Symp Series, 1978, 74(1): 19-21.
    [16] BLUDSZUWEIT C. Model for a general mechanical blood damage prediction[J]. Artificial Organs, 1995, 19(7): 583-589. doi: 10.1111/j.1525-1594.1995.tb02385.x
    [17] ZHANG J F, ZHANG P, FRASER K H, et al. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device[J]. Artificial Organs, 2013, 37(4): 380-389. doi: 10.1111/j.1525-1594.2012.01576.x
    [18] BLACKSHEAR P L, DORMAN F D, STEINBACH J H. Some mechanical effects that influence hemolysis[J]. Transactions American Society for Artificial Internal Organs, 1965, 11: 112-117. doi: 10.1097/00002480-196504000-00022
    [19] GIERSIEPEN M, WURZINGER L J, OPITZ R, et al. Estimation of shear stress-related blood damage in heart valve prostheses: In vitro comparison of 25 aortic valves[J]. The International Journal of Artificial Organs, 1990, 13(5): 300-306. doi: 10.1177/039139889001300507
    [20] GARON A, FARINAS M I. Fast three-dimensional numerical hemolysis approximation[J]. Artificial Organs, 2004, 28(11): 1016-1025. doi: 10.1111/j.1525-1594.2004.00026.x
    [21] BLUDSZUWEIT C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump[J]. Artificial Organs, 1995, 19(7): 590-596. doi: 10.1111/j.1525-1594.1995.tb02386.x
    [22] 高雁飞. 压气机转子叶尖泄漏湍流机理与数值模拟方法研究[D]. 北京: 北京航空航天大学, 2020.

    GAO Y F. Study of turbulence mechanism and numerical methods in compressor tip leakage flow[D]. Beijing: Beihang University, 2020 (in Chinese).
    [23] MARSDEN A L, BAZILEVS Y, LONG C C, et al. Recent advances in computational methodology for simulation of mechanical circulatory assist devices[J]. Wiley Interdisciplinary Reviews Systems Biology and Medicine, 2014, 6(2): 169-188. doi: 10.1002/wsbm.1260
    [24] FARINAS M I, GARON A, LACASSE D, et al. Asymptotically consistent a numerical approximation of hemolysis[J]. Journal of Biomechanical Engineering, 2006, 128(5): 688-696. doi: 10.1115/1.2241663
    [25] GOUBERGRITS L, AFFELD K. Numerical estimation of blood damage in artificial organs[J]. Artificial Organs, 2004, 28(5): 496-517. doi: 10.1111/j.1525-1594.2004.07154.x
    [26] YELESWARAPU K K, ANTAKI J F, KAMENEVA M V, et al. A mathematical model for shear-induced hemolysis[J]. Artificial Organs, 1995, 19(7): 576-582. doi: 10.1111/j.1525-1594.1995.tb02384.x
    [27] 云忠, 谭建平. 基于血液剪切损伤机理的高速螺旋血泵仿真分析[J]. 中山大学学报(自然科学版), 2008, 47(1): 47-50. doi: 10.3321/j.issn:0529-6579.2008.01.012

    YUN Z, TAN J P. Simulation analysis of the high-speed spiral blood pump based on the shear injure principle of blood[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(1): 47-50(in Chinese). doi: 10.3321/j.issn:0529-6579.2008.01.012
    [28] 云忠, 石芬, 向闯, 等. 混流血泵血液压差损伤机理分析及仿真[J]. 机械设计与研究, 2010, 26(3): 29-32. doi: 10.13952/j.cnki.jofmdr.2010.03.023

    YUN Z, SHI F, XIANG C, et al. Study on the injury principle of the blood prossure differevce in the mixed blood pump and its simulation analysis[J]. Machine Design and Research, 2010, 26(3): 29-32(in Chinese). doi: 10.13952/j.cnki.jofmdr.2010.03.023
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  48
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 录用日期:  2022-01-02
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答