留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮温区二维指向深冷环路热管设计与实验研究

李楠 郭元东 许程 张红星 林贵平

李楠,郭元东,许程,等. 液氮温区二维指向深冷环路热管设计与实验研究[J]. 北京航空航天大学学报,2023,49(7):1573-1582 doi: 10.13700/j.bh.1001-5965.2021.0500
引用本文: 李楠,郭元东,许程,等. 液氮温区二维指向深冷环路热管设计与实验研究[J]. 北京航空航天大学学报,2023,49(7):1573-1582 doi: 10.13700/j.bh.1001-5965.2021.0500
LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0500
Citation: LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0500

液氮温区二维指向深冷环路热管设计与实验研究

doi: 10.13700/j.bh.1001-5965.2021.0500
基金项目: 国家自然科学基金(52106067);卓越青年科学基金(2020-JCJQ-ZQ-042);中国博士后科学基金(2019M660403)
详细信息
    作者简介:

    李楠,等:液氮温区二维指向深冷环路热管设计与实验研究

    通讯作者:

    E-mail:guoyd@buaa.edu.cn

  • 中图分类号: V224

Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone

Funds: National Natural Science Foundation of China (52106067); Outstanding Youth Science Fund of China (2020-JCJQ-ZQ-042); China Postdoctoral Science Foundation (2019M660403)
More Information
  • 摘要:

    空间二维指向机构与红外探测器配合,有利于实现对空间目标大范围的动态追踪、指向、快速定位等功能。将深冷环路热管(CLHP)与二维指向机构耦合,可以大大降低系统机构的复杂程度,实现远距离热传输,提高探测精度和转向灵活性。为此,设计研制了液氮温区二维指向CLHP。对设计流程和部件参数进行了介绍,通过伺服电机驱动实现了俯仰、偏航±90°以上的转动。通过开展热真空实验,研究了不同工作参数对超临界启动和传热极限的影响。结果表明:所设计的系统具有最大13 W的传热能力,适当提高充装压力有利于提高系统的稳定性和传热能力,增大次蒸发器辅助载荷有助于提高最大传热能力。

     

  • 图 1  80~100 K温区工质的Dunbar因数变化曲线

    Figure 1.  Variation curves of Dunbar factor of different working fluids at 80−100 K

    图 2  80~100 K温区工质的$ {\text{d}}P/{\text{d}}T $变化曲线

    Figure 2.  Variation curves of dP/dT of different working fluids at 80−100 K

    图 3  液氮冷板结构示意图

    Figure 3.  Schematic diagram of liquid nitrogen cooling plate

    图 4  二维指向机构U型臂结构示意图

    Figure 4.  Schematic diagram of two-dimensional pointing mechanism U-shaped structure

    图 5  实验系统与二维指向CLHP实验件

    Figure 5.  Experimental system and two-dimensional pointing CLHP test unit

    图 6  环路热管工质充装系统示意图

    Figure 6.  Schematic of working fluid filling system for loop heat pipe

    图 7  CLHP热电偶分布与压力表位置示意图

    Figure 7.  Schematic of thermocouple distribution and pressure gauge location on CLHP

    图 8  CLHP冷端降温过程(Qse=2 W,Pch=3.57 MPa)

    Figure 8.  Cold end cooling process of CLHP (Qse=2 W, Pch=3.57 MPa)

    图 9  CLHP热端降温过程(Pch=3.57 MPa)

    Figure 9.  Hot end cooling process of CLHP (Pch=3.57 MPa)

    图 10  管线降温过程沸腾曲线[30]

    Figure 10.  Boiling curve of pipe cooling process[30]

    图 11  CLHP主回路启动过程(Pch=3.57 MPa)

    Figure 11.  Main loop startup process of CLHP (Pch=3.57 MPa)

    图 12  CLHP超临界启动过程(Pch=3.29 MPa)

    Figure 12.  Supercritical startup of CLHP (Pch=3.29 MPa)

    图 13  CLHP超临界启动过程(Pch=3.10 MPa)

    Figure 13.  Supercritical startup of CLHP (Pch=3.10 MPa)

    图 14  CLHP主蒸发器传热极限(Qse=10 W,Pch=3.57 MPa)

    Figure 14.  Heat transfer capacity of primary evaporator of CLHP (Qse=10 W, Pch=3.57 MPa)

    图 15  充装压力对二维指向CLHP主蒸发器传热极限的影响(Qse=10 W)

    Figure 15.  Effect of filling pressure on heat transfer capacity of CLHP primary evaporator of two-dimensional pointing (Qse=10 W)

    图 16  辅助载荷对二维指向CLHP传热极限的影响(Pch=3.57 MPa)

    Figure 16.  Effect of auxiliary heat load on heat transfer capacity of two-dimensional pointing CLHP (Pch=3.57 MPa)

    表  1  传输管线结构参数

    Table  1.   Structure parameters of transport line

    部件长度/
    mm
    外径/mm壁厚/mm俯仰螺旋
    直径/mm
    俯仰螺
    旋匝数
    偏航螺旋
    直径/mm
    俯仰螺
    旋匝数
    主气体
    管线
    1000030.525063504
    主液体
    管线
    1000030.525063504
    次液体
    管线
    1000030.525063504
    下载: 导出CSV

    表  2  蒸发器与储液器结构参数

    Table  2.   Structure parameters of evaporator and compensation chamber

    部件参数数值
    主蒸发器壳体长度×外径×厚度/
    (mm×mm×mm)
    110×13×1
    毛细芯外径×长度/
    (mm×mm)
    11×100
    主储液器容积/mL5
    轴向槽道槽深×槽宽×长度/
    (mm×mm×mm)
    0.8×0.8×80
    数量/个4
    次蒸发器壳体长度×外径×厚度/
    (mm×mm×mm)
    100×13×1
    毛细芯外径×长度/
    (mm×mm)
    11×90
    次储液器容积/mL5
    轴向槽道槽深×槽宽×长度/
    (mm×mm×mm)
    0.8×0.8×80
    数量/个4
    下载: 导出CSV

    表  3  储气室容积与工质充装范围

    Table  3.   Gas reservoir volume and working fluid filling range

    储气室容积/mL 充装质量/g 300 K时充装压力/MPa
    1200 45~65 2.8~3.6
    下载: 导出CSV

    表  4  不同充装压力下CLHP启动完成时主蒸发器温度及系统压力

    Table  4.   Primary evaporator temperature and system pressure under different filling pressures after startup

    状态温度/K压力/MPa
    临界状态1263.36
    冷端温度及饱和压力 850.228
    充装压力3.10 MPa 93.10.279
    充装压力3.29 MPa 91.90.499
    充装压力3.57 MPa 99.40.567
    下载: 导出CSV
  • [1] 朱岩, 白云飞, 王连国, 等. 中国首次火星探测工程有效载荷总体设计[J]. 深空探测学报, 2017, 4(6): 510-514. doi: 10.15982/j.issn.2095-7777.2017.06.002

    ZHU Y, BAI Y F, WANG L G, et al. Integral technical scheme of payloads system for Chinese Mars-1 exploration[J]. Journal of Deep Space Exploration, 2017, 4(6): 510-514(in Chinese). doi: 10.15982/j.issn.2095-7777.2017.06.002
    [2] 刘成, 谢荣建, 王仕越, 等. 丙烯环路热管补偿器的可视化实验研究[J]. 北京航空航天大学学报, 2020, 46(5): 933-940. doi: 10.13700/j.bh.1001-5965.2019.0322

    LIU C, XIE R J, WANG S Y, et al. Visualization experimental study of compensation chamber of a propylene loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 933-940(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0322
    [3] 孟庆亮, 杨涛, 于志, 等. 空间遥感器用环路热管瞬态数值模拟与在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584

    MENG Q L, YANG T, YU Z, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0584
    [4] 薛好, 谢永奇, 戴华, 等. 加速度场中环路热管温度波动现象分析[J]. 北京航空航天大学学报, 2016, 42(7): 1502-1508. doi: 10.13700/j.bh.1001-5965.2015.0465

    XUE H, XIE Y Q, DAI H, et al. Investigation of temperature fluctuation in loop heat pipe under acceleration fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1502-1508(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0465
    [5] 郭元东. 15 K~40 K温区深冷环路热管技术的理论与实验研究[D]. 北京: 北京航空航天大学, 2019.

    GUO Y D. Theoretical and experimental investigation of cryogenic loop heat pipe technology operating in 15 K~40 K[D]. Beijing: Beihang University, 2019(in Chinese) .
    [6] BAI L, ZHANG L, LIN G, et al. Development of cryogenic loop heat pipes: A review and comparative analysis[J]. Applied Thermal Engineering, 2015, 89: 180-191. doi: 10.1016/j.applthermaleng.2015.06.010
    [7] 何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24(1): 1-8.

    HE J, MIAO J Y, ZHANG H X, et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24(1): 1-8(in Chinese).
    [8] HOANG T T, O’CONNELL T A, KU J, et al. Performance demonstration of hydrogen advanced loop heat pipe for 20-30 K cryocooling of far infrared sensors[C]//Optics and Photonics 2005. Bellingham: SPIE, 2005: 590410.
    [9] HOANG T T, O’CONNELL T A, KU J, et al. Design optimization of a hydrogen advanced loop heat pipe for space-based IR sensor and detector cryocooling[C]//SPIE’s 48th Annual Meeting of Optical Science and Technology. Bellingham: SPIE, 2003: 86.
    [10] MO Q, LIANG J. Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory[J]. International Journal of Refrigeration, 2006, 29(4): 519-527. doi: 10.1016/j.ijrefrig.2005.10.011
    [11] GULLY P, MO Q, YAN T, et al. Thermal behavior of a cryogenic loop heat pipe for space application[J]. Cryogenics, 2011, 51(8): 420-428. doi: 10.1016/j.cryogenics.2011.04.009
    [12] ZHAO Y, YAN T, LIANG J, et al. A new way of supercritical startup of a cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118793. doi: 10.1016/j.ijheatmasstransfer.2019.118793
    [13] ZHAO Y, YAN T, LIANG J. Experimental study on a cryogenic loop heat pipe with high heat capacity[J]. International Journal of Heat and Mass Transfer, 2011, 54(15-16): 3304-3308. doi: 10.1016/j.ijheatmasstransfer.2011.03.056
    [14] ZHAO Y, WANG N, YAN T, et al. Experimental study on operating characteristics of a cryogenic loop heat pipe without additional power consumption[J]. Applied Thermal Engineering, 2021, 184: 116262. doi: 10.1016/j.applthermaleng.2020.116262
    [15] MO Q, LIANG J T. A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability[J]. International Journal of Heat and Mass Transfer, 2006, 49(3-4): 770-776. doi: 10.1016/j.ijheatmasstransfer.2005.08.010
    [16] 李强, 马路, 宣益民. 低温环路热管(CLHP)的实验研究[J]. 工程热物理学报, 2010, 31(1): 122-125.

    LI Q, MA L, XUAN Y M. Experimental investigation of cryogenic loop heat pipe[J]. Journal of Engineering Thermophysics, 2010, 31(1): 122-125(in Chinese).
    [17] 刘成志, 董德平, 杨帆. 乙烷温区低温环路热管设计与实验[J]. 低温工程, 2011, 28(6): 57-59. doi: 10.3969/j.issn.1000-6516.2011.06.012

    LIU C Z, DONG D P, YANG F. Design and experimental investigations of ethane cryogenic loop heat pipe[J]. Cryogenics, 2011, 28(6): 57-59(in Chinese). doi: 10.3969/j.issn.1000-6516.2011.06.012
    [18] 张畅, 谢荣建, 张添, 等. 液氮温区平板蒸发器环路热管实验研究[J]. 北京航空航天大学学报, 2019, 45(6): 1211-1217. doi: 10.13700/j.bh.1001-5965.2018.0623

    ZHANG C, XIE R J, ZHANG T, et al. Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1211-1217(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0623
    [19] BAI L, LIN G, ZHANG H, et al. Experimental study of a nitrogen-charged cryogenic loop heat pipe[J]. Cryogenics, 2012, 52(10): 557-563. doi: 10.1016/j.cryogenics.2012.07.005
    [20] BAI L, LIN G, ZHANG H, et al. Operating characteristics of a miniature cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2012, 55(25-26): 8093-8099. doi: 10.1016/j.ijheatmasstransfer.2012.08.044
    [21] GUO Y, LIN G, BAI L, et al. Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design[J]. Energy Conversion and Management, 2016, 118: 353-363. doi: 10.1016/j.enconman.2016.04.022
    [22] GUO Y, LIN G, HE J, et al. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe[J]. Energy Conversion and Management, 2017, 134: 178-187. doi: 10.1016/j.enconman.2016.12.038
    [23] GUO Y, LIN G, HE J, et al. Supercritical startup strategy of cryogenic loop heat pipe with different working fluids[J]. Applied Thermal Engineering, 2019, 155: 267-276. doi: 10.1016/j.applthermaleng.2019.04.008
    [24] GUO Y, LIN G, BAI L, et al. Experimental study of the thermal performance of a neon cryogenic loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1266-1274. doi: 10.1016/j.ijheatmasstransfer.2017.12.138
    [25] GUO Y, LIN G, ZHANG H, et al. Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157: 516-525. doi: 10.1016/j.energy.2018.05.133
    [26] 周顺涛, 莫青, 张红星, 等. 深冷环路热管传热性能研究[J]. 航天器工程, 2010, 19(3): 91-95. doi: 10.3969/j.issn.1673-8748.2010.03.014

    ZHOU S T, MO Q, ZHANG H X, et al. Experimental study on heat transfer performance of cryogenic loop heat pipe[J]. Spacecraft Engineering, 2010, 19(3): 91-95(in Chinese). doi: 10.3969/j.issn.1673-8748.2010.03.014
    [27] 周顺涛, 莫青, 张红星, 等. 深冷环路热管超临界启动实验研究[J]. 低温工程, 2010(3): 18-22. doi: 10.3969/j.issn.1000-6516.2010.03.004

    ZHOU S T, MO Q, ZHANG H X, et al. Experimental investigation on supercritical startup of cryogenic loop heat pipe[J]. Cryogenics, 2010(3): 18-22(in Chinese). doi: 10.3969/j.issn.1000-6516.2010.03.004
    [28] KU J, ROBINSON F. Thermal vacuum testing of a helium loop heat pipe for large area cryocooling[C]//46th International Conference on Environmental Systems. [S.1.]: [s.n.], 2016.
    [29] HOANG T T, O’CONNELL T A, KHRUSTALEV D K. Development of a flexible advanced loop heat pipe for across-gimball cryocooling[C]//SPIE 48th Annual Meeting of Optical Science and Technology. Bellingham: SPIE, 2003, 5172: 68-76.
    [30] SHAEFFER R, HU H, CHUNG J N. An experimental study on liquid nitrogen pipe chilldown and heat transfer with pulse flows[J]. International Journal of Heat and Mass Transfer, 2013, 67: 955-966. doi: 10.1016/j.ijheatmasstransfer.2013.08.037
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  54
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-11-30
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答