留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于角度转化的空间碎片测角数据精密定轨方法

张耀 刘静

张耀,刘静. 基于角度转化的空间碎片测角数据精密定轨方法[J]. 北京航空航天大学学报,2023,49(7):1600-1605 doi: 10.13700/j.bh.1001-5965.2021.0507
引用本文: 张耀,刘静. 基于角度转化的空间碎片测角数据精密定轨方法[J]. 北京航空航天大学学报,2023,49(7):1600-1605 doi: 10.13700/j.bh.1001-5965.2021.0507
ZHANG Y,LIU J. Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1600-1605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0507
Citation: ZHANG Y,LIU J. Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1600-1605 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0507

基于角度转化的空间碎片测角数据精密定轨方法

doi: 10.13700/j.bh.1001-5965.2021.0507
基金项目: 国家自然科学基金(12073045,11803052)
详细信息
    通讯作者:

    E-mail:liujing@bao.ac.cn

  • 中图分类号: P135

Precise orbit determination method for angle-only observation data of space debris based on angle conversion theory

Funds: National Natural Science Foundation of China (12073045,11803052)
More Information
  • 摘要:

    空间碎片对在轨卫星的影响日益增大,持续确定和更新空间碎片轨道日益受到重视。基于角度转化思想,提出了一种空间碎片测角数据精密定轨方法。基于常用的两行根数(TLE)数据应用需求,根据差分思想建立基于SGP4/SDP4预报模型的TLE精密定轨方法;以赤经-赤纬数据为典型场景,分析原始定义法、赤经投影法的优缺点;提出将常规双元素角度资料转化为三元素角度资料的角度转化法。仿真结果表明:当观测数据较多集中于测站天顶方向时,角度转化法能够将精密定轨收敛速度提高25%,轨道精度提高2~10倍。

     

  • 图 1  赤经和赤纬的定义

    Figure 1.  Definition of right ascension and declination

    图 2  新观测量的定义

    Figure 2.  Definition of new angle

    图 3  LEO定轨结果预报误差

    Figure 3.  Propagation errors of LEO orbiting results

    图 4  MEO定轨结果预报误差

    Figure 4.  Propagation errors of MEO orbiting results

    图 5  HEO定轨结果预报误差

    Figure 5.  Propagation errors of HEO orbiting results

    表  1  3颗空间碎片的标称轨道根数

    Table  1.   Nominal orbital elements of 3 debris

    轨道半长轴/km偏心率倾角/(°)升交点赤经/(°)近地点幅角/(°)平近点角/(°)面质比/(m2·kg−1)
    LEO 8380.9770.01058297.9990.5231.006113.5650.02
    MEO20002.6280.00989097.9980.0230.915 48.4490.02
    HEO41999.1690.49983664.988359.987 180.011 52.9640.02
    下载: 导出CSV

    表  2  3颗空间碎片产生的模拟观测数据

    Table  2.   Simulated observations from 3 debris

    轨道弧段
    序号
    弧长/s最低赤纬/(°)最高赤纬/(°)
    LEO1294.62266.20272.912
    2250.16263.40970.409
    377.07266.35868.833
    446.49064.47764.818
    MEO11623.08943.09971.181
    2168035.62264.044
    32825.67665.38189.626
    46905−3.11289.626
    5306023.00877.662
    HEO11308041.01571.596
    2840031.78753.963
    36180−17.460−28.934
    42340−8.009−11.759
    下载: 导出CSV

    表  3  精密定轨结果

    Table  3.   Results of precise orbit determination

    轨道观测数据
    处理形式
    迭代
    次数
    定轨残差
    LEO原始定义法187.5×10−5
    赤经投影法185.0×10−5
    角度转化法144.0×10−5
    MEO原始定义法141.9×10−4
    赤经投影法151.4×10−5
    角度转化法101.0×10−5
    HEO原始定义法92.0×10−5
    赤经投影法92.0×10−5
    角度转化法92.0×10−5
    下载: 导出CSV
  • [1] BRAUN V, LEMMENS S, REIHS B, et al. Analysis of breakup events[C]//Proceedings of the 7th European Conference on Space Debris, 2017: 1-12.
    [2] PIROVANO L, PRINCIPE G, ARMELLIN R. Data association and uncertainty pruning for tracks determined on short arcs[J]. Celestial Mechanics and Dynamical Astronomy, 2020, 132: 6-30. doi: 10.1007/s10569-019-9947-8
    [3] CICALO S, BECK J, MINISCI E, et al. GOCE radar-based orbit determination for re-entry predictions and comparison with GPS-based POD[C]//Proceedings of the 7th European Conference on Space Debris, 2017: 1-14.
    [4] 刘林, 张强, 廖新浩. 人卫精密定轨中的算法问题[J]. 中国科学(A辑), 1998, 28(5): 848-856.

    LIU L, ZHANG Q, LIAO X H. Algorithm problems in precise orbit determination of artificial earth satellite[J]. Science in China(Series A), 1998, 28(5): 848-856(in Chinese).
    [5] 程昊文. 航天器轨道理论在空间目标编目管理中的应用[D]. 南京: 南京大学, 2012: 9-11.

    CHENG H W. The application of satellite orbit theory in maintaining the space object catalog[D]. Nanjing: Nanjing University, 2012: 9-11(in Chinese).
    [6] MARSHALL J A, LUTHCKE S B. Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination[J]. Journal of Spacecraft and Rockets, 1994, 31(1): 99-105. doi: 10.2514/3.26408
    [7] BOCK H, HUGENTOBLER U, SPRINGER T A, et al. Efficient precise orbit determination of LEO satellites using GPS[J]. Advances in Space Research, 2002, 30(2): 295-300. doi: 10.1016/S0273-1177(02)00298-3
    [8] 张宇, 孔静, 陈明, 等. CE5T拓展试验轨道精度分析[J]. 宇航学报, 2019, 40(9): 1014-1023. doi: 10.3873/j.issn.1000-1328.2019.09.005

    ZHANG Y, KONG J, CHEN M, et al. Orbit accuracy analysis for CE5T extended mission[J]. Journal of Astronautics, 2019, 40(9): 1014-1023(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.09.005
    [9] 张宇, 周立, 孔静, 等. 长期姿控扰动情况下空间实验室轨道影响分析及建模[J]. 宇航学报, 2017, 38(12): 1273-1280. doi: 10.3873/j.issn.1000-1328.2017.12.003

    ZHANG Y, ZHOU L, KONG J, et al. Analysis and modeling of space laboratory orbit under continuous attitude control perturbation[J]. Journal of Astronautics, 2017, 38(12): 1273-1280(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.12.003
    [10] Committee for the Assessment of the U. S. Air Force’s Astrodynamics Standards. Continuing Kepler’s quest: Assessing air force space command’s astrodynamics standards[S]. Washington, D. C. : The National Academies Press, 2012: 21-26.
    [11] GRZEGORZ B, KRZYSZTOF S, RADOSŁAW Z, et al. Determination of precise Galileo orbits using combined GNSS and SLR observations[J]. GPS Solution, 2021, 25: 11. doi: 10.1007/s10291-020-01045-3
    [12] VALLADO D A, FINKLEMAN D. A critical assessment of satellite drag and atmospheric density modeling: AIAA 2008-6442[R]. Reston: AIAA, 2008.
    [13] 韦栋, 赵长印. SGP4/SDP4模型精度分析[J]. 天文学报, 2009, 50(3): 332-339. doi: 10.3321/j.issn:0001-5245.2009.03.010

    WEI D, ZHAO C Y. Analysis on the accuracy of the SGP4/SDP4 model[J]. Acta Astronomica Sinica, 2009, 50(3): 332-339(in Chinese). doi: 10.3321/j.issn:0001-5245.2009.03.010
    [14] VALLADO D A. Fundamental of astrodynamics and application [M]. Hawthorne: Microcosm Press, 2007: 113-115.
    [15] 刘林, 汤靖师. 卫星轨道理论与应用[M]. 北京: 电子工业出版社, 2015: 427-428.

    LIU L, TANG J S. Satellite orbit theory and application[M]. Beijing: Publishing House of Electronics Industry, 2015: 427-428(in Chinese).
    [16] 陈磊, 韩蕾, 百显宗, 等. 空间目标轨道力学与误差分析[M]. 北京: 国防工业出版社, 2010: 93-95.

    CHEN L, HAN L, BAI X Z, et al. Orbit dynamics and error analysis of space object[M]. Beijing: National Defense Industry Press, 2010: 93-95(in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  49
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-02-23
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答