留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空强电磁场环境下铝的二次电子倍增规律

商圣飞 杨晓宁 杨勇 毕研强 武南开 于澜涛

商圣飞,杨晓宁,杨勇,等. 真空强电磁场环境下铝的二次电子倍增规律[J]. 北京航空航天大学学报,2023,49(7):1606-1613 doi: 10.13700/j.bh.1001-5965.2021.0514
引用本文: 商圣飞,杨晓宁,杨勇,等. 真空强电磁场环境下铝的二次电子倍增规律[J]. 北京航空航天大学学报,2023,49(7):1606-1613 doi: 10.13700/j.bh.1001-5965.2021.0514
SHANG S F,YANG X N,YANG Y,et al. Secondary electron multiplication of aluminum under strong vacuum electromagnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1606-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0514
Citation: SHANG S F,YANG X N,YANG Y,et al. Secondary electron multiplication of aluminum under strong vacuum electromagnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1606-1613 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0514

真空强电磁场环境下铝的二次电子倍增规律

doi: 10.13700/j.bh.1001-5965.2021.0514
详细信息
    通讯作者:

    E-mail:shangshengfei@buaa.edu.cn

  • 中图分类号: O461;O462

Secondary electron multiplication of aluminum under strong vacuum electromagnetic field

More Information
  • 摘要:

    针对卫星表面受强电磁环境的影响导致的充放电问题,采用1D3V的粒子网格(PIC)方法对卫星表面铝材料在空间强电磁环境作用下的二次电子倍增作用规律进行研究。结果表明:星表铝材料在不同微波幅值、不同频率下的二次电子倍增效应存在“最易”倍增区间;二次电子倍增规律表现为在特定频率下,铝的二次电子倍增随着微波电场幅值的增大先增强后降低,表现出最佳倍增区间的效应;在特定幅值下,铝的二次电子倍增效应也会先增强后降低,但是整体表现出低频时倍增强,高频时抑制倍增的效应。

     

  • 图 1  典型二次电子发射系数曲线[25]

    Figure 1.  Typical secondary electron emission yield curves[25]

    图 2  电子数在微波作用下的演化理论模型校验

    Figure 2.  Verification of theoretical model for evolution of electron number evolution under presence of microwaves

    图 3  微波作用铝的模型示意图

    Figure 3.  Schematic diagram of model under microwave action on aluminum

    图 4  不同微波电场幅值下的空间电子数变化

    Figure 4.  Variation of electron number under different amplitude of microwave electric field

    图 5  不同微波电场幅值下的碰壁电子能量变化

    Figure 5.  Variation of wall-impingerment electron energy under different microwave electric field amplitude

    图 6  不同微波频率下的空间电子数变化

    Figure 6.  Variation of electron number at different microwave frequencies

    图 7  1 GHz微波频率与空间电子数振荡频率的关系

    Figure 7.  Relationship between 1 GHz microwave frequency and electron number oscillation

    图 8  不同微波频率下碰壁电子能量变化

    Figure 8.  Variation of electron energy at different microwave frequencies

  • [1] 范费彬, 谢锦林, 陆全明, 等. 空间等离子体磁场重联过程地面实验装置及实验研究概述[J]. 航天器环境工程, 2019, 36(6): 655-661.

    FAN F B, XIE J L, LU Q M, et al. Ground-based experimental study of magnetic reconnection in space plasma environment[J]. Spacecraft Environment Engineering, 2019, 36(6): 655-661 (in Chinese).
    [2] 盛雪莲, 吴静, 张翀. 中国空间磁层线辐射现象探究[J]. 北京航空航天大学学报, 2018, 44(7): 1504-1513. doi: 10.13700/j.bh.1001-5965.2017.0525

    SHENG X L, WU J, ZHANG C. Space magnetospheric line radiation above China[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1504-1513(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0525
    [3] 唐萍, 朱光武, 秦国泰, 等. 航天器表面污染物质沉积变化和控制因子评估[J]. 北京航空航天大学学报, 2015, 41(5): 891-896. doi: 10.13700/j.bh.1001-5965.2014.0376

    TANG P, ZHU G W, QIN G T, et al. Changes of contamination deposition on spacecraft surface and evaluation of control factors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 891-896(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0376
    [4] 周建涛, 蔡伟, 武延鹏, 等. 星敏感器空间辐射效应研究[J]. 宇航学报, 2010, 31(1): 24-30. doi: 10.3873/j.issn.1000-1328.2010.01.003

    ZHOU J T, CAI W, WU Y P, et al. Research on radiation effects of star sensors[J]. Journal of Astronautics, 2010, 31(1): 24-30(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.003
    [5] 韩建伟, 陈睿, 李宏伟, 等. 单粒子效应及充放电效应诱发航天器故障的甄别与机理探讨[J]. 航天器环境工程, 2021, 38(3): 344-350.

    HAN J W, CHEN R, LI H W, et al. The anomalies supposed to be due to the single event effects may be caused by spacecraft charging induced electrostatic discharge[J]. Spacecraft Environment Engineering, 2021, 38(3): 344-350 (in Chinese).
    [6] 陈卓, 杨晓宁, 杨勇. GEO卫星空间自然强电磁环境与防护综述[J]. 环境技术, 2019, 37(2): 68-72. doi: 10.3969/j.issn.1004-7204.2019.02.019

    CHEN Z, YANG X N, YANG Y. Overview of GEO satellite under natural strong electromagnetic environment and protection methods[J]. Environmental Technology, 2019, 37(2): 68-72(in Chinese). doi: 10.3969/j.issn.1004-7204.2019.02.019
    [7] BENFORD J. Space applications of high power microwaves[C]// 2007 IEEE 34th International Conference on Plasma Science (ICOPS). Piscataway: IEEE Press, 2007: 257.
    [8] 周传明, 刘国治, 刘永贵. 高功率微波源[M]. 北京: 原子能出版社, 2007.

    ZHOU C M, LIU G Z, LIU Y G. High power microwave source[M]. Beijing: Atomic Press, 2007 (in Chinese).
    [9] 秋实. 高功率微波窗口击穿及馈源技术[D]. 西安: 西安电子科技大学, 2010.

    QIU S. Study of dielectric window breakdown and feed technqies for high power microwave systems[D]. Xi'an: Xidian University, 2010 (in Chinese).
    [10] CHANG C, LIU G Z, TANG C X, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18(5): 055702. doi: 10.1063/1.3560599
    [11] QIU S, HAO X W, ZHANG G J, et al. Tree-like breakdown phenomena of dielectric window under X-band high power microwave in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 971-977. doi: 10.1109/TDEI.2010.5492274
    [12] 程国新. 高功率微波输出窗真空表面闪络研究[D]. 长沙: 国防科学技术大学, 2013.

    CHENG G X. Study on the vacuum surface flashover of high-power microwave window[D]. Changsha: National University of Defense Technology, 2013 (in Chinese).
    [13] FOSTER J, BEESON S, THOMAS M, et al. Rapid formation of dielectric surface flashover due to pulsed high power microwave excitation[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(4): 964-970.
    [14] STEPHENS J, BEESON S, DICKENS J, et al. Charged electret deposition for the manipulation of high power microwave flashover delay times[J]. Physics of Plasmas, 2012, 19(11): 112111. doi: 10.1063/1.4767649
    [15] NEUBER A A, EDMISTON G F, KRILE J T, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Transactions on Magnetics, 2007, 43(1 Pt. 2): 496-500.
    [16] ZHANG P, LAU Y Y, FRANZI M, et al. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas[J]. Physics of Plasmas, 2011, 18(5): 053508. doi: 10.1063/1.3592990
    [17] KIM H C, VERBONCOEUR J P. Time-dependent physics of a single-surface multipactor discharge[J]. Physics of Plasmas, 2005, 12(12): 123504. doi: 10.1063/1.2148963
    [18] KIM H C, VERBONCOEUR J P, LAU Y Y. Invited paper-modeling RF window breakdown: From vacuum multipactor to RF plasma[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 774-782.
    [19] 蔡利兵, 王建国, 朱湘琴. 不同气压下介质表面高功率微波击穿的数值模拟[J]. 强激光与粒子束, 2010, 22(10): 2363-2368. doi: 10.3788/HPLPB20102210.2363

    CAI L B, WANG J G, ZHU X Q. Numerical simulation of high power microwave breakdown on dielectric surface at different gas pressures[J]. High Power Laser and Particle Beams, 2010, 22(10): 2363-2368(in Chinese). doi: 10.3788/HPLPB20102210.2363
    [20] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究[J]. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217

    CAI L B, WANG J G. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave[J]. Acta Physica Sinica, 2011, 60(2): 025217(in Chinese). doi: 10.7498/aps.60.025217
    [21] WANG J G, CAI L B, ZHU X Q, et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing[J]. Physics of Plasmas, 2010, 17(6): 063503. doi: 10.1063/1.3432715
    [22] 董烨, 周前红, 董志伟, 等. 高功率微波沿面闪络击穿机制粒子模拟[J]. 强激光与粒子束, 2013, 25(4): 950-958. doi: 10.3788/HPLPB20132504.0950

    DONG Y, ZHOU Q H, DONG Z W, et al. PIC simulation of mechanism of high power microwave flashover and breakdown on dielectric surface[J]. High Power Laser and Particle Beams, 2013, 25(4): 950-958(in Chinese). doi: 10.3788/HPLPB20132504.0950
    [23] 李定. 等离子体物理学[M]. 北京: 高等教育出版社, 2006.

    LI D. Plasma physics[M]. Beijing: Higher Education Press, 2006 (in Chinese).
    [24] VAUGHAN R M. Secondary emission formulas[J]. IEEE Transactions on Electron Devices, 1993, 40(4): 830.
    [25] 张慧博, 杨建华, 程国新, 等. 刻槽结构高功率微波输出窗次级电子倍增效应[J]. 强激光与粒子束, 2013, 25(5): 1189-1194. doi: 10.3788/HPLPB20132505.1189

    ZHANG H B, YANG J H, CHENG G X, et al. Investigation on multipactor of high-power microwave window with grooves[J]. High Power Laser and Particle Beams, 2013, 25(5): 1189-1194(in Chinese). doi: 10.3788/HPLPB20132505.1189
  • 加载中
图(8)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  34
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 录用日期:  2021-11-22
  • 网络出版日期:  2022-01-25
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答