留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速超声振动铣削钛合金实验研究

韩雄 孙哲飞 耿大喜 张德远

韩雄,孙哲飞,耿大喜,等. 高速超声振动铣削钛合金实验研究[J]. 北京航空航天大学学报,2023,49(7):1707-1714 doi: 10.13700/j.bh.1001-5965.2021.0519
引用本文: 韩雄,孙哲飞,耿大喜,等. 高速超声振动铣削钛合金实验研究[J]. 北京航空航天大学学报,2023,49(7):1707-1714 doi: 10.13700/j.bh.1001-5965.2021.0519
HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0519
Citation: HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0519

高速超声振动铣削钛合金实验研究

doi: 10.13700/j.bh.1001-5965.2021.0519
详细信息
    通讯作者:

    E-mail:gengdx@ buaa.edu.cn

  • 中图分类号: V261.92

Experiment research on high-speed ultrasonic vibration milling of titanium alloy

More Information
  • 摘要:

    针对钛合金在普通铣削(CM)时因切削速度低而面临的切削力大、薄壁工件变形大、加工效率低、刀具磨损严重等问题,采用高速超声振动铣削(HUVM)方法加工钛合金,实验研究其加工表面质量和切削力。从运动学角度出发对HUVM方法进行运动学分析。搭建包括超声振动系统、加工系统及测量系统在内的高速超声振动铣削实验平台。采用单因素实验对比CM和HUVM这2种方法对钛合金加工切削力和表面质量的影响规律。研究结果表明:与CM加工相比,HUVM加工可以使切削力降低32.6%~35.3%。并且HUVM加工表面粗糙度虽略有增加,但是表面结构可以更加均匀;此外,HUVM加工表面残余应力均为压应力,其绝对值随着每齿进给量和切削速度的增大而降低,而CM加工表面残余应力为拉应力。

     

  • 图 1  HUVM加工过程示意图

    Figure 1.  Schematic of HUVM process

    图 2  铣刀4个刀齿运动轨迹

    Figure 2.  Motion trace of four cutter teeth

    图 3  实验装置

    Figure 3.  Experimental setup

    图 4  三向切削力信号

    Figure 4.  Three-way cutting force signal

    图 5  切削速度与平均切削力关系

    Figure 5.  Relationship between average cutting speed, feed force, and tangential force

    图 6  平均切削力与每齿进给量关系

    Figure 6.  Relationship between average feed force, tangential force and feed rate per tooth

    图 7  表面粗糙度与每齿进给量关系

    Figure 7.  Relationship between surface roughness and feed rate per tooth

    图 8  加工表面宏观形貌

    Figure 8.  Macro-morphology of machined surface

    图 9  加工表面微观形貌

    Figure 9.  Micro-morphology of machined surface

    图 10  表面粗糙度和切削速度关系

    Figure 10.  Relationship between surface roughness and cutting speed

    图 11  残余应力和每齿进给量关系(vf=80 m/min)

    Figure 11.  Relationship between residual stress and feed rate per tooth(vf=80 m/min)

    图 12  残余应力和切削速度关系(fz=0.015 mm/齿)

    Figure 12.  Relationship between residual stress and cutting speed ( fz=0.015 mm/齿)

    表  1  钛合金化学成分[13]

    Table  1.   Chemical composition of titanium alloy[13]

    元素AlVFeCNHOTi
    占比/%5.5~
    6.75
    3.5~
    4.5
    <0.25<0.08<0.05<0.01<0.2余量
    下载: 导出CSV

    表  2  实验参数设置

    Table  2.   Experimental parameter settings

    参数数值
    每齿进给量fz/(mm·齿−1)0.015,0.03,0.045,0.06,0.075,0.09,
    0.105,0.12,0.135
    切削速度v/(m·min−1)80,100,120,140,160
    径向切宽/mm0.2
    轴向切深/mm8
    铣削类型CM, HUVM
    振动频率/Hz17880
    振动幅值/μmA=15.8, B=13.6
    下载: 导出CSV
  • [1] ZHANG M, ZHANG D, GUO H, et al. High-speed rotary ultrasonic elliptical milling of Ti-6Al-4V using high-pressure coolant[J]. Metals, 2020, 10(4): 500. doi: 10.3390/met10040500
    [2] LI A H, ZHAO J, LUO H B, et al. Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5): 465-478.
    [3] WU Y, NIU J Z, FUJIMOTO M, et al. Fundamental machining characteristics of ultrasonic assisted turning of titanium alloy Ti-6Al-4V[J]. Advanced Materials Research, 2013, 797: 344-349. doi: 10.4028/www.scientific.net/AMR.797.344
    [4] 路冬, 蔡力钢, 程强, 等. 钛合金超声椭圆振动辅助车削实验研究[J]. 振动与冲击, 2015, 34(6): 151-154. doi: 10.13465/j.cnki.jvs.2015.06.029

    LU D, CAI L G, CHENG Q, et al. Tests for ultrasonic elliptical vibration-assisted turning of titanium alloy[J]. Journal of Vibration and Shock, 2015, 34(6): 151-154(in Chinese). doi: 10.13465/j.cnki.jvs.2015.06.029
    [5] 张明亮, 张德远, 刘佳佳, 等. 钛合金薄壁件高速超声椭圆振动铣削机理和试验[J]. 北京航空航天大学学报, 2019, 45(8): 1606-1612. doi: 10.13700/j.bh.1001-5965.2018.0712

    ZHANG M L, ZHANG D Y, LIU J J, et al. Mechanism and experiment of high-speed ultrasonic elliptical vibration milling of thin-walled titanium alloy parts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1606-1612(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0712
    [6] 王明海, 李世永, 郑耀辉. 超声铣削钛合金材料表面粗糙度研究[J]. 农业机械学报, 2014, 45(6): 341-346. doi: 10.6041/j.issn.1000-1298.2014.06.052

    WANG M H, LI S Y, ZHENG Y H. Surface roughness of titanium alloy under ultrasonic vibration milling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 341-346(in Chinese). doi: 10.6041/j.issn.1000-1298.2014.06.052
    [7] TAO G C, MA C, SHEN X H, et al. Experimental and modeling study on cutting forces of feed direction ultrasonic vibration-assisted milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 709-715.
    [8] CAKIR F H, GURGEN S, SOFUOGLU M A, et al. Finite element modeling of ultrasonic assisted turning of Ti6Al4V alloy[J]. Procedia - Social and Behavioral Sciences, 2015, 195: 2839-2848. doi: 10.1016/j.sbspro.2015.06.404
    [9] 张翔宇, 隋翯, 张德远, 等. 高速超声振动切削钛合金可行性研究[J]. 机械工程学报, 2017, 53(19): 120-127. doi: 10.3901/JME.2017.19.120

    ZHANG X Y, SUI H, ZHANG D Y, et al. Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J]. Journal of Mechanical Engineering, 2017, 53(19): 120-127(in Chinese). doi: 10.3901/JME.2017.19.120
    [10] ZHENG K, LIAO W H, DONG Q, et al. Friction and wear on titanium alloy surface machined by ultrasonic vibration-assisted milling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9): 411. doi: 10.1007/s40430-018-1336-9
    [11] 武民. 不同振动方式下的钛合金振动辅助铣削工艺效果研究[D]. 新乡: 河南科技学院, 2018.

    WU M. Study on the technological effect of vibration-assisted milling of titanium alloy under different vibration modes[D]. Xinxiang: Henan Institute of Science and Technology, 2018 (in Chinese).
    [12] 李世永. 超声扭转振动辅助铣削钛合金的加工技术研究[D]. 沈阳: 沈阳航空航天大学, 2014.

    LI S Y. Research on machining technology of ultrasonic torsional vibration assisted milling of titanium alloy[D]. Shenyang: Shenyang Aerospace University, 2014 (in Chinese).
    [13] ZHU Z J, SUN J, LI J F, et al. Investigation on the influence of tool wear upon chip morphology in end milling titanium alloy Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1477-1485.
    [14] LIU J J, JIANG X G, HAN X, et al. Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5): 1451-1465.
    [15] CHEN G, REN C Z, ZOU Y H, et al. Mechanism for material removal in ultrasonic vibration helical milling of Ti6Al4V alloy[J]. International Journal of Machine Tools and Manufacture, 2019, 138: 1-13. doi: 10.1016/j.ijmachtools.2018.11.001
    [16] 于浩, 赵军, 盖少磊, 等. 42CrMo钢车削表面完整性研究[J]. 组合机床与自动化加工技术, 2021(7): 137-140. doi: 10.13462/j.cnki.mmtamt.2021.07.032

    YU H, ZHAO J, GAI S L, et al. Research on surface integrity in turning of 42CrMo steel[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(7): 137-140(in Chinese). doi: 10.13462/j.cnki.mmtamt.2021.07.032
    [17] 陈建岭, 李剑峰, 孙杰, 等. 钛合金铣削加工表面残余应力研究[J]. 机械强度, 2010, 32(1): 53-57. doi: 10.16579/j.issn.1001.9669.2010.01.011

    CHEN J L, LI J F, SUN J, et al. Surface residual stress of titanium alloy induced by milling[J]. Journal of Mechanical Strength, 2010, 32(1): 53-57(in Chinese). doi: 10.16579/j.issn.1001.9669.2010.01.011
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  61
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2021-11-05
  • 网络出版日期:  2022-01-18
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答