留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤环多极对称绕法对Shupe误差抑制效果仿真分析

张东波 汪立新 李灿

张东波,汪立新,李灿. 光纤环多极对称绕法对Shupe误差抑制效果仿真分析[J]. 北京航空航天大学学报,2023,49(7):1715-1721 doi: 10.13700/j.bh.1001-5965.2021.0530
引用本文: 张东波,汪立新,李灿. 光纤环多极对称绕法对Shupe误差抑制效果仿真分析[J]. 北京航空航天大学学报,2023,49(7):1715-1721 doi: 10.13700/j.bh.1001-5965.2021.0530
ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0530
Citation: ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0530

光纤环多极对称绕法对Shupe误差抑制效果仿真分析

doi: 10.13700/j.bh.1001-5965.2021.0530
基金项目: 陕西省自然科学基础研究计划(2020JQ-491)
详细信息
    通讯作者:

    E-mail:wlxxian@sina.com

  • 中图分类号: V279;TN253

Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error

Funds: Natural Science Basic Research Program of Shaanxi (2020JQ-491)
More Information
  • 摘要:

    Shupe误差是高精度光纤陀螺(IFOG)工程化过程中的最大瓶颈问题之一。建立一个精确到匝的光纤环有限元模型,基于此模型,并在不同温度激励下分析八极、十六极和三十二极对称绕法的温度性能。仿真结果表明:相对于八极对称绕法,采用十六极对称绕法和三十二极对称绕法的光纤陀螺能够有效抑制热致陀螺漂移,且十六极对称绕法的抑制效果最好。这对高精度IFOG的光纤环绕制方法的选择提供了指导。

     

  • 图 1  光纤环绕制匝数示意图

    Figure 1.  Diagram of number of fiber coil turns

    图 2  不同对称绕法示意图

    Figure 2.  Diagram of different fiber coil winding methods

    图 3  32层20匝光纤环完整模型

    Figure 3.  Complete model of optical fiber coil with 32 layers and 20 turns

    图 4  仿真变温曲线

    Figure 4.  Temperature curve of simulation

    图 5  光纤环模型和网格划分局部放大

    Figure 5.  Magnification and grid division of optical fiber coil model

    图 6  不同温度激励方式下光纤环温度分布仿真结果

    Figure 6.  Simulation results of temperature distribution of fiber coil under different temperature excitations

    图 7  四周均匀激励下各对称绕法的陀螺热致漂移曲线

    Figure 7.  Gyro drift error curve under uniform temperature excitation

    图 8  径向单侧激励下各对称绕法的陀螺热致漂移曲线

    Figure 8.  Gyro drift error curve under radial temperature excitation

    图 9  轴向单侧激励下各对称绕法的陀螺热致漂移曲线

    Figure 9.  Gyro drift error curve under axial temperature excitation

    图 10  径向单侧激励下64层光纤环不同绕法的陀螺漂移曲线

    Figure 10.  Gyro drift error curve under the radial temperature excitation with 64 layer fiber coil

    表  1  仿真采用的光纤环结构参数

    Table  1.   Fiber coil structure parameter for simulation

    参数数值
    层数32
    匝数20
    包层直径/m0.000135
    纤芯直径/m0.00008
    光纤环直径/m0.1128
    光纤总长/m230.72
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    材料密度ρ/
    (kg·m−3)
    比热c/
    ( J·(kg·K)−1)
    导热率λ/
    ( W·(K·m2)−1)
    纤芯22031 9901.38
    包层1 90014000.21
    9701 6000.21
    下载: 导出CSV

    表  3  各绕法不同温度激励方式热致陀螺漂移标准差

    Table  3.   Gyro drift SD of different temperature excitations and winding methods (°)/h

    绕制方法四周均匀激励径向单侧激励轴向单侧激励
    八极对称0.001250.001490.00181
    十六极对称0.000290.000430.00045
    三十二极对称0.000730.000720.00123
    下载: 导出CSV

    表  4  64层光纤环各绕法热致陀螺漂移标准差

    Table  4.   Gyro drift SD of different winding methods with 64 layer fiber coil (°)/h

    绕制方法标准差
    十六极对称0.00042
    三十二极对称0.00099
    下载: 导出CSV
  • [1] VALI V, SHORTHILL R W. Fiber ring interferometer[J]. Applied Optics, 1976, 15(5): 1099-1100. doi: 10.1364/AO.15.001099
    [2] 霍雷, 谢良平, 谌尧周, 等. 光纤陀螺的发展与应用[J]. 电子科技, 2015, 28(8): 174-177. doi: 10.16180/j.cnki.issn1007-7820.2015.08.049

    HUO L, XIE L P, CHEN Y Z, et al. Development and application of fiber optic gyroscopes[J]. Electronic Science and Technology, 2015, 28(8): 174-177(in Chinese). doi: 10.16180/j.cnki.issn1007-7820.2015.08.049
    [3] SHUPE D. Thermally induced nonreciprocity in the fiber optic interferometer[J] Applied Optics, 1980, 19(5): 654-655.
    [4] FRIGO N J. Compensation of linear source of non-reciprocity in Sagnac interferometers[J]. Fiber Optic and Laser Sensor I, 1983, 412: 268-271.
    [5] MOHR F. Thermooptically induced bias drift in fiber optical Sagnac interferometers[J]. Journal of Lightwave Technology, 1995, 14(1): 27-41.
    [6] GAO Z X, ZHANG Y G, WANG G C, et al. Analysis and simulation for the thermal performance of the octupolar fiber coil[J]. Optical Engineering, 2014, 53(1): 016114. doi: 10.1117/1.OE.53.1.016114
    [7] WILLIAMS M . Optical fiber placement for crossover-free fiber optic gyros[C]//Conference on Photorefractive Fiber and Crystal Devices. Materials, Optical Properties, and Applications, 2006, 6314: 108-118.
    [8] DU S S, GUAN Y M, JIN J, et al. Finite element model of thermal transient effect for crossover-free fiber optic gyros[J]. Optik, 2012, 123(8): 748-751. doi: 10.1016/j.ijleo.2011.06.036
    [9] DYOTT R. Reduction of the Shupe effect in fibre optic gyros, the random-wound coil[J]. Electronics Letters, 1996, 32(23): 2177-2178.
    [10] 万洵, 谢良平. 光纤陀螺温度场仿真分析与陀螺外罩结构优化设计[J]. 应用光学, 2016, 37(3): 353-358. doi: 10.5768/JAO201637.0301006

    WAN X, XIE L P. Temperature field analysis and structure redesign of fiber optic gyroscope[J]. Journal of Applied Optics, 2016, 37(3): 353-358(in Chinese). doi: 10.5768/JAO201637.0301006
    [11] 陈军, 王巍, 李晶, 等. 光纤线圈固化对光纤陀螺性能的影响[J]. 中国惯性技术学报, 2012, 20(6): 709-714. doi: 10.3969/j.issn.1005-6734.2012.06.018

    CHEN J, WANG W, LI J, et al. Effect caused by potted adhesive on FOG performance[J]. Journal of Chinese Inertial Technology, 2012, 20(6): 709-714(in Chinese). doi: 10.3969/j.issn.1005-6734.2012.06.018
    [12] 黄云柯, 李强, 胡梦纯, 等. 光纤捷联惯性测量组合热设计及温度控制技术[J]. 上海航天, 2016, 33(S1): 122-126. doi: 10.19328/j.cnki.1006-1630.2016.S1.023

    HUANG Y K, LI Q, HU M C, et al. Research on temperature control and thermal design of FOG inertial measurement unit[J]. Aerospace Shanghai, 2016, 33(S1): 122-126(in Chinese). doi: 10.19328/j.cnki.1006-1630.2016.S1.023
    [13] 冯卡力, 李安, 覃方君, 等. 光纤陀螺温度误差自适应神经模糊补偿方法[J]. 兵工学报, 2016, 37(4): 641-647. doi: 10.3969/j.issn.1000-1093.2016.04.010

    FENG K L, LI A, QIN F J, et al. Temperature error compensation method based on adaptive neuro fuzzy inference for fiber-optic gyro[J]. Acta Armamentarii, 2016, 37(4): 641-647(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.04.010
    [14] 李绪友, 张春梅, 刘华兵, 等. 光纤环十六极对称绕法温度性能的仿真与分析[J]. 中国惯性技术学报, 2016, 24(6): 780-785. doi: 10.13695/j.cnki.12-1222/o3.2016.06.015

    LI X Y, ZHANG C M, LIU H B, et al. Simulation and analysis on temperature performance of fiber ring by 16-polar symmetrical winding method[J]. Journal of Chinese Inertial Technology, 2016, 24(6): 780-785(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2016.06.015
    [15] 李绪友, 凌卫伟, 许振龙, 等. 基于交叉法绕制的光纤环的槽体设计[J]. 光学学报, 2015, 36(6): 0606002. doi: 10.3788/AOS201535.0606002

    LI X Y, LING W W, XU Z L, et al. Design of a new spool for fiber coil based on cross winding pattern[J]. Acta Optica Sinica, 2015, 36(6): 0606002(in Chinese). doi: 10.3788/AOS201535.0606002
    [16] 王玥泽, 陈晓冬, 张桂才, 等. 八极绕法对光纤陀螺温度性能的影响[J]. 中国惯性技术学报, 2012, 20(5): 617-620. doi: 10.3969/j.issn.1005-6734.2012.05.023

    WANG Y Z, CHEN X D, ZHANG G C, et al. Effect of octupole winding on temperature performance of fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2012, 20(5): 617-620(in Chinese). doi: 10.3969/j.issn.1005-6734.2012.05.023
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  42
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 录用日期:  2021-09-17
  • 网络出版日期:  2021-11-30
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答