留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间大伸展并联机构的设计与性能分析

赫利涛 房海蓉 陈宇飞 李寅

赫利涛,房海蓉,陈宇飞,等. 空间大伸展并联机构的设计与性能分析[J]. 北京航空航天大学学报,2023,49(7):1722-1734 doi: 10.13700/j.bh.1001-5965.2021.0548
引用本文: 赫利涛,房海蓉,陈宇飞,等. 空间大伸展并联机构的设计与性能分析[J]. 北京航空航天大学学报,2023,49(7):1722-1734 doi: 10.13700/j.bh.1001-5965.2021.0548
HE L T,FANG H R,CHEN Y F,et al. Design and performance analysis of spatial large extension parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1722-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0548
Citation: HE L T,FANG H R,CHEN Y F,et al. Design and performance analysis of spatial large extension parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1722-1734 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0548

空间大伸展并联机构的设计与性能分析

doi: 10.13700/j.bh.1001-5965.2021.0548
基金项目: 中央高校基本科研业务费(2018JBZ007)
详细信息
    通讯作者:

    E-mail:hrfang@bjtu.edu.cn

  • 中图分类号: V462;TH112

Design and performance analysis of spatial large extension parallel mechanism

Funds: Fundamental Research Funds for Central Universities (2018JBZ007)
More Information
  • 摘要:

    大型工件加工时执行机构伸展空间不足是目前航天制造业一个亟待解决的问题。为增大执行机构末端的工作空间,并为其提供稳定可靠的伸展基础,提出一类具备高刚度、大伸展特性的并联可伸展机构。重点针对并联可伸展机构展开设计与分析,基于图论进行可伸展机构构型综合,利用构型演化得到PRRR、PRRR-3R和PRRR-6R(P表示移动副,R表示转动副)这3种可伸展支链单元构型,在此基础上,对3种可伸展机构支链单元的伸展性能、刚度进行对比分析,最终优选出满足要求的PRRR支链单元配置成并联可伸展机构。该并联可伸展机构可应用于需要提供大伸展及大刚度的场合,实现对其他执行机构运动空间的拓展。

     

  • 图 1  4种基本杆组的部分拓扑图

    Figure 1.  Partial topological diagrams of four basic rod groups

    图 2  二杆机构拓扑图Ⅱ

    Figure 2.  Topological diagram of two-bar mechanism Ⅱ

    图 3  四杆机构拓扑图Ⅳ

    Figure 3.  Topology diagram of four-bar mechanism Ⅳ

    图 4  四杆机构拓扑图Ⅳ的拓扑子图

    Figure 4.  Topological subgraph of topological figure Ⅳ of four-bar mechanism

    图 5  六杆机构拓扑图Ⅵ-1

    Figure 5.  Topology diagram of six-bar mechanism Ⅵ-1

    图 6  六杆机构拓扑图Ⅵ-1的拓扑子图

    Figure 6.  Topological subgraph of six-bar mechanism topology Ⅵ-1

    图 7  六杆机构拓扑图Ⅵ-2

    Figure 7.  Topology diagram of six-bar mechanism Ⅵ-2

    图 8  八杆机构拓扑图Ⅷ

    Figure 8.  Topological diagram of eight-bar mechanism Ⅷ

    图 9  八杆机构拓扑图Ⅷ的拓扑子图

    Figure 9.  Topological subgraph of eight-bar mechanism topology Ⅷ

    图 10  建立PRRR支链坐标系

    Figure 10.  Establishment of PRRR branch chain coordinate system

    图 11  PRRR支链伸展性能变化曲线

    Figure 11.  Stretching performance change curve of PRRR branch chain

    图 12  建立PRRR-3R支链坐标系

    Figure 12.  Establishment of PRRR-3R branch chain coordinate system

    图 13  PRRR-3R支链伸展性能变化曲线

    Figure 13.  Stretching performance change curve of PRRR-3R branch chain

    图 14  建立PRRR-6R支链坐标系

    Figure 14.  Establishment of PRRR-6R branch chain coordinate system

    图 15  PRRR-6R支链伸展性能变化曲线

    Figure 15.  Stretching performance change curve of PRRR-6R branch chain

    图 16  不同可伸展机构的对比

    Figure 16.  Comparison of different stretchable mechanisms

    图 17  划分网格

    Figure 17.  Meshing parts

    图 18  PRRR支链的应力云图

    Figure 18.  Stress cloud chart of PRRR branch chain

    图 19  PRRR-3R支链的应力云图

    Figure 19.  Stress cloud chart of PRRR-3R branch chain

    图 20  PRRR-6R支链的应力云图

    Figure 20.  Stress cloud chart of PRRR-6R branch chain

    图 21  最大应力云图

    Figure 21.  Maximum stress cloud chart

    表  1  构件数N、运动副数M和运动链闭环数L的对应关系

    Table  1.   Corresponding relationship between components N,motion pairs M and closed loops L

    构件数N运动副数量M运动链的闭环数L
    210
    441
    672
    8103
    $ \vdots $$ \vdots $$ \vdots $
    下载: 导出CSV

    表  2  四杆机构拓扑图Ⅳ与邻接矩阵的对应关系

    Table  2.   Correspondence between topological diagram Ⅳ of four-bar mechanism and adjacency matrix

    顶点1234
    10101
    21010
    30101
    41010
    下载: 导出CSV

    表  3  四杆机构拓扑图部分构型演化

    Table  3.   Partial configuration evolution of topological diagram for four-bar mechanism

    运动副情况拓扑图演化构型
    1个P副
    1个P副
    全R副
    下载: 导出CSV

    表  4  六杆机构拓扑VI-1的构型总数

    Table  4.   Total number of configurations of topological diagram for six-bar mechanism Ⅵ-1

    机架拓扑图1个P副2个P副全R副构型总数
    构件1$ {}_1^1{M_6} = 7 $$ {}_1^2{M_6} = 21 $$ {}_1^0{M_6} = 1 $29
    构件2$ {}_2^1{M_6} = 4 $$ {}_2^2{M_6} = 12 $$ {}_2^0{M_6} = 1 $17
    下载: 导出CSV

    表  5  六杆机构拓扑VI-2的构型总数

    Table  5.   Total number of configurations of topological diagram for six-bar mechanism Ⅵ-2

    机架拓扑图1个P副2个P副全R副构型总数
    构件1$ {}_1^1{M_6} = 5 $$ {}_1^2{M_6} = 13 $$ {}_1^0{M_6} = 1 $19
    构件2$ {}_2^1{M_6} = 4 $$ {}_2^2{M_6} = 12 $$ {}_2^0{M_6} = 1 $17
    构件5$ {}_5^1{M_6} = 5 $$ {}_5^2{M_6} = 13 $$ {}_5^0{M_6} = 1 $19
    下载: 导出CSV

    表  6  六杆机构拓扑图部分构型演化

    Table  6.   Partial configuration evolution of topological diagram for six-bar mechanism

    序号运动副情况拓扑图演化构型
    11个P副
    21个P副
    31个P副
    41个P副
    5全R副
    6全R副
    下载: 导出CSV

    表  7  八杆机构拓扑图部分构型演化

    Table  7.   Partial configuration evolution of topological diagram of eight-bar mechanism

    运动副情况构型拓扑图演化构型
    1个P副
    全R副
    下载: 导出CSV

    表  8  可伸展支链构型拓扑图及其演化构型

    Table  8.   Topological diagram of extendable branched chain configuration and its evolutionary configuration

    支链单元机构构型拓扑图演化构型
    PRRR
    支链
    四杆机构
    PRRR-3R
    支链
    六杆机构
    PRRR-6R
    支链
    八杆机构
    下载: 导出CSV

    表  9  不同可伸展机构的伸展性能比较

    Table  9.   Comparison of stretching performance of different extendable mechanisms


    基本支
    链单元
    移动距离
    $\Delta y$/mm
    起始高度/
    mm
    终止高度/
    mm
    高度差
    $\Delta h$/mm
    1PRRR 支链10001636.3068421.30751214.9993
    2PRRR-3R
    支链
    10002545.3662655.36721889.9990
    3PRRR-6R
    支链
    10002454.4602631.96121822.4990
    下载: 导出CSV

    表  10  3种支链构型的线伸展比

    Table  10.   Linear extension ratio of three branched chain configurations

    基本支链单元支链尺寸参数高度差$\Delta h$/mm线伸展比
    PRRR
    支链
    1214.99931.215
    PRRR-3R
    支链
    1889.99901.890
    PRRR-6R
    支链
    1822.49901.822
    下载: 导出CSV

    表  11  45号钢的相关性能参数

    Table  11.   Relevant performance parameters of 45# steel

    材料名称弹性模量/
    (N·m−2)
    泊松比质量密度/
    (kg·m−3)
    屈服强度/
    (N·m−2)
    45号钢2.09×10110.2697.89×1033.55×108
    下载: 导出CSV

    表  12  3种可伸展支链构型的性能比较

    Table  12.   Stiffness comparison of three extendable branched chain configurations

    基本支链
    单元
    可伸展支链
    结构
    可伸展支链
    应力云图
    最大应
    力/ MPa
    占[σ]
    百分比/%
    伸展
    性能Θ
    并联可伸展机构
    PRRR
    支链
    22.515.8 1.215
    PRRR-3R
    支链
    98.469.3 1.890
    PRRR-6R
    支链
    94.866.8 1.822
    下载: 导出CSV
  • [1] 刘欣, 王国庆, 李曙光, 等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术, 2013(1): 1-6.

    LIU X, WANG G Q, LI S G, et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology, 2013(1): 1-6(in Chinese).
    [2] 周磊, 李新和, 俞大辉, 等. 球冠形薄壁封头在小减薄率工况下的失稳研究[J]. 锻压技术, 2016, 41(1): 25-31. doi: 10.13330/j.issn.1000-3940.2016.01.006

    ZHOU L, LI X H, YU D H, et al. Research on instabilities of thin-walled spherical head at low thinning rate[J]. Forging & Stamping Technology, 2016, 41(1): 25-31(in Chinese). doi: 10.13330/j.issn.1000-3940.2016.01.006
    [3] 朱云平, 张帆. 贮箱绝热层打磨机器人系统设计[J]. 上海工程技术大学学报, 2017, 31(1): 1-4. doi: 10.3969/j.issn.1009-444X.2017.01.001

    ZHU Y P, ZHANG F. Design of grinding robot system for tank insulating layer[J]. Journal of Shanghai University of Engineering Science, 2017, 31(1): 1-4(in Chinese). doi: 10.3969/j.issn.1009-444X.2017.01.001
    [4] 黄顺舟, 王力, 祁佩, 等. 低温贮箱隔热层打磨机器人的动力学仿真分析[J]. 环球市场信息导报, 2016, 37: 137-139.

    HUANG S Z, WANG L, QI P, et al. Dynamic simulation analysis of low temperature tank insulation polishing robot[J]. Global Market Information Guide, 2016, 37: 137-139(in Chinese).
    [5] 党嘉强, 陶正瑞, 徐锦泱, 等. 聚氨酯泡沫绝热层高效精密打磨装置设计与建模[J]. 机床与液压, 2020, 48(2): 59-62. doi: 10.3969/j.issn.1001-3881.2020.02.013

    DANG J Q, TAO Z R, XU J Y, et al. Design and modeling of high-efficiency and high-precision grinding device for polyurethane foam insulations[J]. Machine Tool & Hydraulics, 2020, 48(2): 59-62(in Chinese). doi: 10.3969/j.issn.1001-3881.2020.02.013
    [6] 陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学(技术科学), 2018, 48(12): 1302-1312. doi: 10.1360/N092018-00192

    TAO B, ZHAO X W, DING H. Study on robotic mobile machining techniques for large complex components[J]. Scientia Sinica (Technologica), 2018, 48(12): 1302-1312(in Chinese). doi: 10.1360/N092018-00192
    [7] 李冰岩, 刘荣强, 从强, 等. 基于豆荚杆的三棱柱式可展开薄膜支撑臂设计与优化[J]. 机械工程学报, 2020, 56(7): 35-43. doi: 10.3901/JME.2020.07.035

    LI B Y, LIU R Q, CONG Q, et al. Design and optimization of a tri-prism deployable membrane support arm using lenticular collapsible composite tubes[J]. Journal of Mechanical Engineering, 2020, 56(7): 35-43(in Chinese). doi: 10.3901/JME.2020.07.035
    [8] 杨萍萍, 冯长凯. 可展开伸缩套管式伸展臂结构设计与分析[J]. 电子科技, 2008, 21(9): 8-11. doi: 10.3969/j.issn.1007-7820.2008.09.003

    YANG P P, FENG C K. The structural design and analysis of the deployable[J]. Electronic Science and Technology, 2008, 21(9): 8-11(in Chinese). doi: 10.3969/j.issn.1007-7820.2008.09.003
    [9] SHAN M H, GUO H W, LIU R Q, et al. Design and analysis of a triangular prism modular deployable mast[C]//2013 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2013: 1546-1551.
    [10] 高明星, 刘荣强, 李冰岩, 等. 空间可展开三棱柱伸展臂设计与优化[J]. 机械工程学报, 2020, 56(15): 129-137. doi: 10.3901/JME.2020.15.129

    GAO M X, LIU R Q, LI B Y, et al. Design and optimization of space deployable tri-prism mast[J]. Journal of Mechanical Engineering, 2020, 56(15): 129-137(in Chinese). doi: 10.3901/JME.2020.15.129
    [11] 马艳, 张群, 李锐明, 等. 可折展空间八转动副连杆捕获机构的设计[J]. 西安交通大学学报, 2020, 54(3): 179-187. doi: 10.7652/xjtuxb202003022

    MA Y, ZHANG Q, LI R M, et al. Design and analysis of foldable capture mechanism based on spatial 8-rotation linkages[J]. Journal of Xi’an Jiaotong University, 2020, 54(3): 179-187(in Chinese). doi: 10.7652/xjtuxb202003022
    [12] 刘仁志, 宋志佳, 高文杰, 等. 正八面体空间伸展臂的八面体单元结构分析[J]. 机械设计, 2013, 30(6): 72-75. doi: 10.3969/j.issn.1001-2354.2013.06.018

    LIU R Z, SONG Z J, GAO W J, et al. Analysis of octahedron unit structure of regular octahedron space deployable arm[J]. Journal of Machine Design, 2013, 30(6): 72-75(in Chinese). doi: 10.3969/j.issn.1001-2354.2013.06.018
    [13] 韩博, 许允斗, 姚建涛, 等. 双层环形桁架可展天线机构运动特性与动力学分析[J]. 兵工学报, 2020, 41(4): 810-821. doi: 10.3969/j.issn.1000-1093.2020.04.020

    HAN B, XU Y D, YAO J T, et al. Kinematic characteristics and dynamics analysis of a double-ring truss deployable antenna mechanism[J]. Acta Armamentarii, 2020, 41(4): 810-821(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.04.020
    [14] ZHAO J S, CHU F L, FENG Z J. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335. doi: 10.1016/j.mechmachtheory.2008.03.014
    [15] 史创, 郭宏伟, 刘荣强, 等. 双层环形可展开天线机构构型优选及结构设计[J]. 宇航学报, 2016, 37(7): 869-878.

    SHI C, GUO H W, LIU R Q, et al. Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism[J]. Journal of Astronautics, 2016, 37(7): 869-878(in Chinese).
    [16] ZHAO T S, WANG C, LIU X, et al. Stiffness and singularity analysis of foldable parallel mechanism for ship-based stabilized platform[J]. Robotica, 2016, 34(4): 913-924. doi: 10.1017/S0263574714001969
    [17] 房海蓉, 陈江红. 一种新型四自由度并联机构设计与分析[J]. 北京交通大学学报, 2011, 35(4): 134-137. doi: 10.3969/j.issn.1673-0291.2011.04.027

    FANG H R, CHEN J H. Structure synthesis and analysis of a novel four-degree-of-freedom parallel manipulator[J]. Journal of Beijing Jiaotong University, 2011, 35(4): 134-137(in Chinese). doi: 10.3969/j.issn.1673-0291.2011.04.027
    [18] LI D, GUO S, CHEN Y. Kinematic performance and task planning analysis of a parameter reconfigurable parallel mechanism[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2019: 545-552.
    [19] 邹琦, 曲海波, 郭盛. 一种三自由度可重构并联机构优化设计及性能分析[J]. 中国机械工程, 2018, 29(10): 1172-1178. doi: 10.3969/j.issn.1004-132X.2018.10.007

    ZOU Q, QU H B, GUO S. Optimal design and performance analysis of a 3-DOF reconfigurable parallel mechanism[J]. China Mechanical Engineering, 2018, 29(10): 1172-1178(in Chinese). doi: 10.3969/j.issn.1004-132X.2018.10.007
    [20] HUANG G Y, GUO S, ZHANG D, et al. Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness[J]. Robotica, 2018, 36(2): 187-203. doi: 10.1017/S0263574717000236
    [21] 杨廷力. 机器人机构拓扑结构学[M]. 北京: 机械工业出版社, 2004.

    YANG T L. Topology structure design of robot mechanisms[M]. Beijing: China Mechine Press, 2004 (in Chinese).
    [22] 丁华锋, 黄真. 基于环路特性的运动链拓扑图及特征描述的自动生成[J]. 机械工程学报, 2007, 43(11): 40-43. doi: 10.3321/j.issn:0577-6686.2007.11.006

    DING H F, HUANG Z. Automatic creation of topological graphs and the characteristic representations of kinematic chains based on the loop characteristics[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 40-43(in Chinese). doi: 10.3321/j.issn:0577-6686.2007.11.006
  • 加载中
图(21) / 表(12)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  41
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 录用日期:  2021-10-15
  • 网络出版日期:  2021-10-29
  • 整期出版日期:  2023-07-31

目录

    /

    返回文章
    返回
    常见问答